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Abstract

Motivation: Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand

prediction provides important insight in understanding the biological function of proteins. Binding

ligand prediction is also useful for drug design and examining potential drug side effects.

Results: We present a computational method named Patch-Surfer2.0, which predicts binding

ligands for a protein pocket. By representing and comparing pockets at the level of small local sur-

face patches that characterize physicochemical properties of the local regions, the method can

identify binding pockets of the same ligand even if they do not share globally similar shapes.

Properties of local patches are represented by an efficient mathematical representation, 3D Zernike

Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype,

which includes a new feature that captures approximate patch position with a geodesic distance

histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets

that will be searched against by a query. The benchmark shows better performance of Patch-

Surfer2.0 over existing methods.

Availability and implementation: http://kiharalab.org/patchsurfer2.0/

Contact: dkihara@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Small molecules, such as metabolites and drugs, have important

interactions with protein receptors, regulating many different proc-

esses in biological systems. Therefore, predicting binding ligands can

provide important information for elucidating protein functions.

Predicting binding ligands for proteins can also provide useful infor-

mation for computational drug discovery, drug side effects and pro-

tein design. By combining computational screening with

experiments, protein–ligand interaction networks can be revealed

(Liu et al., 2011).

In principle, ligands for a protein can be predicted by identifying

a global or local structure similar to known proteins. FINDSITE

(Brylinski and Skolnick, 2009) and GalaxySite (Heo et al., 2014)

use a modeled structure by threading to predict binding ligands for

a target protein. Global structure-based methods capture distant

evolutionary relationships that provide powerful information for

function prediction; however, such methods have difficulty for cases

where proteins of largely different global structures bind the same

ligand molecules.

Local structure-based methods aim to identify similarity between

a target pocket and known binding sites. Local structure can be

compared at different structure levels. Catalytic Site Atlas (Porter

et al., 2004) and AFT (Arakaki et al., 2004) compare a few functional

residues in binding sites, where similarity is quantified with the

root-mean-square deviation (RMSD) of the residues. Pseudocenters of

residues (Gold and Jackson, 2006; Shatsky et al., 2006) as well as

atom-level representation were also used (Hoffmann et al., 2010).

However, cases have been reported where binding site residues for

some ligand types are not always well conserved (Denessiouk et al.,

2001; Moodie et al., 1996; Nagano et al., 2002).
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Alternatively, surface representations have been used for describ-

ing binding pockets. Surface representations do not explicitly specify

residue/atom positions in pockets and thus are coarser representa-

tions. The advantage of a surface representation is that it can attenu-

ate a certain level of differences in pocket shapes, which are

commonly observed in pockets of the same ligand type. eF-Seek

(Kinoshita and Nakamura, 2005) constructs a triangle mesh to rep-

resent protein surface. Das et al. (2009) used a histogram of dis-

tances between nodes in a triangle mesh that represents a protein

surface. SMAP performs pocket alignment using Delaunay tessella-

tion and amino acid residue comparison (Xie and Bourne, 2008).

ILBind (Hu et al., 2012) combines FINDSITE and SMAP for inverse

ligand binding protein prediction.

Besides binding ligand prediction methods discussed earlier,

there are methods that predict binding pocket location in proteins

using various pocket descriptions. Those descriptions include grid

representation (Capra et al., 2009; Kawabata, 2010; Li et al., 2008),

atom triangles (Xie and Hwang, 2012) and a-shape (Liang et al.,

1998). COACH (Yang et al., 2013) takes a consensus of multiple

programs.

Mathematical moment-based approaches have been identified to

be suitable for molecular surface representation. Moment-based

methods can naturally control the resolution of the surface descrip-

tion, and physicochemical properties on the surface can be repre-

sented in the same way as surface shape. Thornton and her

colleagues used spherical harmonics for describing binding pockets

(Kahraman et al., 2007; Morris et al., 2005). In our earlier works,

Pocket-Surfer, global pocket shape and the surface electrostatic po-

tential are represented using 3D Zernike descriptors (3DZD; Chikhi

et al., 2010). Subsequently, we proposed Patch-Surfer, which repre-

sents a pocket as a set of small local surface patches, each of which

is described by 3DZD (Sael and Kihara, 2012). The local patch rep-

resentation of pockets enables the method to identify corresponding

regions in pockets even if the global shapes of pockets are different.

Although Patch-Surfer compared favorably against the existing

methods in terms of prediction accuracy, it was tested on small data-

sets with a limited number of ligand types. In this work, we com-

piled a large dataset of over 6000 non-redundant pockets with 2707

different ligands with which our method was tested. Moreover, the

algorithm was significantly improved in four more aspects: First, we

introduced a new feature of a patch called the approximate patch

position (APPS) that describes the relative position of the patch in a

pocket. Second, we use geodesic distance rather than Euclidean dis-

tance for computing distance between patches in a pocket. Third,

the procedure to identify corresponding patches in two pockets was

revised so that the selected patch pairs are guaranteed to yield the

minimum (i.e. best) score. Finally, we also consider similarity of lig-

ands when scores for each ligand are computed. On the large data-

set, we show that Patch-Surfer2.0 shows overall higher accuracy

than the previous version as well as existing methods.

2 Methods

2.1 Non-redundant binding pocket database
A non-redundant database of pockets with bound ligands was

constructed based on the protein-small-molecule database (PSMDB;

Wallach and Lilien, 2009). Starting from 5438 protein–ligand

complexes from PSMDB, we selected a non-redundant set of 2444

different ligand types in the 6547 pockets by careful examination of

ligand–protein interactions. One hundred seventeen ligand types

have more than five pockets. The selection procedure and the list of

the 117 ligands are provided in Supplementary Material

(Supplementary Table S1).

2.2 The Patch-Surfer2.0 algorithm
The original Patch-Surfer algorithm was described in our previous

papers (Sael and Kihara, 2010, 2012). Here we outline the algorithm

with an emphasis on the new implementation.

In Patch-Surfer, a query pocket in a protein is segmented into

overlapping local patches, each of which fits within a sphere of

5.0 Å radius. A surface patch is characterized with four features:

geometric shape, surface electrostatic potential, hydrophobicity and

concavity, each of which is described with 3DZD. A query pocket is

compared with pockets of known binding ligands in a database, and

binding ligands will be predicted from the list of pockets ranked by

the similarity to the query. To compute the similarity of two pock-

ets, corresponding patches in the two pockets are identified, and a

similarity score is computed based on geometric and physicochemi-

cal similarity of paired patches.

2.2.1 3D Zernike descriptors

3DZD is a series expansion of a 3D function that allows a compact

and rotationally invariant representation of a 3D object (Canterakis,

1999). 3DZD has been successfully applied for various biomolecular

surface representations (Kihara et al., 2011). To compute 3DZD for

a pocket patch, a voxelized shape representation was created by

mapping atoms of the patch onto a 3D grid and assigning each voxel

a value of 1 if it is overlapped atoms and 0 otherwise. To represent

physicochemical values, i.e. electrostatic potential, hydrophobicity

or concavity, the values are mapped onto the grid instead of 1. The

value-mapped 3D grid was considered as a 3D function, f(x). This

f(x) is expanded into a series in terms of Zernike-Canterakis basis

defined as follows:

Xm
nl ¼

3

4p

ð
jxj�1

f ðxÞZm

nlðxÞdx (1)

where

Zm
nlðr; #;/Þ ¼ RnlY

m
l ð#;/Þ (2)

We used order n¼15, which corresponded to 72 invariants.

Ym
l ð#;/Þ is the spherical harmonics and RnlðrÞ is the radial function.

Then, the 3DZD, Fnl, is calculated as norms of vectors Xnl. The

norm gives rotational invariance to the descriptor:

Fnl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm¼l

m¼�l

ðXm
nlÞ

2

vuut (3)

The distance of two 3DZDs is quantified with the Euclidean dis-

tance (L2 norm) of the vectors of Fnl. The distance of two patches,

pd3DZD, is a weighted average of 3DZDs of four features men-

tioned earlier. The weights were taken from our previous work (Sael

and Kihara, 2012).

2.2.2 Approximate patch position

APPS is a new term introduced in Patch-Surfer2.0. The APPS is a

histogram of geodesic distances between the center of a patch and

the other patch centers in the pocket. The geodesic distance is the

distance measured along the surface. The histogram tells a rough

position of a patch in the pocket, e.g. near an edge or around the

center. Geodesic distances were binned into 40 with a 1.0 Å interval.

APPS for two patches is quantified by the L2 norm of their

histograms.

2 X.Zhu et al.
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2.2.3 Geodesic relative position difference

GRPD captures relative positions of patches in a pocket. Given two

pockets with identified corresponding patches between them, GRPD

for a new patch pair is the average difference of geodesic distances

between each of the new patches to existing patches in each pocket:

GRPDðA;B; sA
i ; s

B
j ;m

A;BÞ ¼ 1

jmA;Bj
�
X

k2mA;B

jG2ðsA
i ; s

A
k Þ �G2ðsB

j ; s
B
mA;BðkÞÞj

(4)

(sA
i, sB

j) denotes a pair of patch centers in pocket A and B, respect-

ively, to be examined, mA,B is a list of corresponding patches

between pockets A and B, and j mA,B j is the number of correspond-

ing patches. j mA,B j is at most the number of either of the size of

pocket A or B (i.e. the number of patches in the pocket), whichever

smaller. The corresponding patch in pocket B for patch k in pocket

A is denoted as sB
mA,B(k). G2 is the geodesic distance between two

patch centers. In the original Patch-Surfer, we used the Euclidean

distance, but we revised it to the geodesic distance in Patch-

Surfer2.0.

2.2.4. Combined scores

The three scoring terms mentioned earlier are combined into a

composite score. Two terms, the patch physicochemical distance

using 3DZD termed pd3DZD and APPS, are combined with a

weight factor, w1:

MScoreðA;B;mA;BÞ ¼ w1pd 3DZD ðA;B;mA;BÞ
þ ð1:0�w1ÞAPPS ðA;B;mA;BÞ (5)

The Matching score (MScore) represents similarity of corres-

ponding patches in pockets A and B. Then, we further combined

GRPD with MScore to yield the Total score (TScore), with w2:

TScore ðA;B;mA;BÞ ¼ w2 �MScore ðA;B;mA;BÞ þ ð1:0�w2Þ
�GRPDðA;B;mA;BÞ (6)

Finally, the average TScore was computed as the final similarity

score between the two pockets for mA,B.

avgTScore ðA;BÞ ¼ nA

jmA;Bj
1

jmA;Bj
X

k2mA;B

TScore ðA;B;mA;BÞ
 !

(7)

The first term nA/jmA,Bj is for penalizing when the number of

matched pairs jmA,Bj is smaller than the number of patches in

the query, nA. The smaller the score is the more similar the

pockets are.

2.2.5. Auction algorithm for identifying corresponding patches

To compute the scores, the correspondence of patches between two

pockets A and B, mA,B, is identified with a modified auction

algorithm (Sael and Kihara, 2010), which optimizes a target score

by matching patches. In the original Patch-Surfer, only pd3DZD

was optimized, and after the correspondence was established, the

other terms were added to ‘reevaluate’ the matches. In

PatchSurfer2.0, the final score (7) is used as the target function.

Thus, the optimality of the matching pairs in terms of the total score

is guaranteed.

2.2.6. Ligand-type prediction score

A query pocket will be compared with all the pockets in the data-

base, and the pockets in the database will be ranked by avgTScore.

Based on the ranked pocket list, predictions of binding ligands will

be made using Pocket_Scorew, which is the score of a query pocket

P for a ligand type F:

Pocket scorew ðP; FÞ ¼
Xk

i¼ 1

wlðiÞ;F log
n

i

� �� �
�

Xk

i¼1
wlðiÞ;FXn

i¼1
wlðiÞ;F

(8)

In essence, this is a type of k-nearest neighbor (where k is the num-

ber of top matches counted in computing the score), but distin-

guishes itself by three important enhancements for this particular

problem. First, a retrieved pocket at rank i contributes to the overall

score with a decreasing score of log(n/i) as the rank decreases, where

n is the number of pockets in the database. wl(i),F is a similarity score

of two ligands, the ligand of the retrieved pocket at rank i and the

ligand F, computed with SIMCOMP (Hattori et al., 2003).

SIMCOMP uses a graph matching algorithm to compare chemical

structures of two molecules. Its score ranges from 0.0 to the highest

score, 1.0. If the raw SIMCOMP score was less than 0.72, we set

wl(i),F¼0. The second term expresses the enrichment factor of

ligand F within the rank k. The ligand similarity score wl(i),F is

newly used in Patch-Surfer2.0. In the original Pocket_Score (Chikhi

et al., 2010), we simply considered only the same ligand as

the query, i.e. dl(i),F, which is 1 when l(i) equals to F and 0

otherwise. The entire procedure of Patch-Surfer2.0 is illustrated in

Figure 1.

3 Results

3.1 Analysis of score components
In Patch-Surfer2.0, three parameters, w1, w2 (5 and 6) and k (8),

must be determined. The optimization was performed on a subset of

the non-redundant binding pocket database, which contains pockets

for seven ligand types: adenosine monophosphate (AMP), adenosine

triphosphate (ATP), flavin adenine dinucleotide (FAD), flavin mono-

nucleotide (FMN), glucose (GLC), heme (HEM) and nicotinamide

adenine dinucleotide (NAD).

First, we determined the w1 that optimizes MScore. Values of w1

were explored from 0.0 to 1.0 with an interval of 0.1 with a combin-

ation of different k, which was changed from 25, 50, 100, 200, 300,

400, to 500. Each pocket of the seven ligand types was selected as

query and compared with all the remaining pockets in the database.

Fig. 1. Flowchart of Patch-Surfer2.0

Large-scale binding ligand prediction by Patch-Surfer2.0 3
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Then, binding ligands were predicted by Pocket_Scorew from the

ranked list of pockets.

Figure 2 shows the average Top 10 and Top 15 accuracy of the

seven ligand types with different combinations of w1 and k (more re-

sults on Top 5, 20 and 25 accuracy are provided in Supplementary

Figure S1). The Top X accuracy indicates the frequency of queries

whose correct ligand is predicted within the Top X predicted ligands

ranked by score. The accuracy increases as k increases and nearly

plateaus at k¼200. We selected 0.4 for w1, because the accuracy

was the highest when averaged over all the values of k for Top 5, 10

and 15 accuracies. We selected 200 for k.

With the w1 values decided earlier, we used the same process to

determine w2 for TScore (Supplementary Fig. S2). These plots show

a similar trend to Figure 2; the curves in general plateaued at

k¼200. We chose 0.8 for w2, because that gives the maximum aver-

age accuracy over k for Top 5, 10, 15 and 20. k was set to 200

where the accuracy peaked with w2¼0.8.

Table 1 summarizes the accuracy of MScore and TScore using

the determined parameter values as well as individual terms,

pd3DZD, APPS and GRPD, and the original Patch-Surfer. TScore

showed higher accuracy than Mscore and all the individual scores

and original Patch-Surfer for all Top 5 to Top 25 accuracy. Among

the individual scores, APPS, the newly added term in this work, out-

performed the other two individual scores. APPS showed even

higher accuracy than the original Patch-Surfer. MScore that com-

bines pd3DZD and APPS was more accurate than using either one

of the scores individually.

Figure 3 examines the effect of considering the ligand similarity

weight, wl(i),F, in Pocket_scorew (8). The motivation of using the

weight is to give credit when a pocket is retrieved, whose natural

ligand is the same as the query but has been crystallized with a

different molecule (e.g. a drug). Since a bound molecule to a

pocket is usually similar to its natural ligand, the weight can provide

a partial score to the query’s natural ligand. Top 5 to Top 25

accuracies obtained by two scores were compared, ones computed

with Pocket_scorew with wl(i),F and those obtained with

Pocket_score with dl(i),F. Overall, the accuracies improved by using

the wl(i),F weight. An improvement of larger than 0.05

for Pocket_scorew over Pocket_score was observed for 14 cases

while a decrease in accuracy by more than 0.05 was observed for

four cases.

In the development stage, we have also incorporated a scoring

term that evaluates the pocket size difference between a query and a

retrieved pocket into MScore as in the original of Patch-Surfer.

However, it did not show an improvement in accuracy. This may be

because the new APPS term, which is a histogram, already contains

the pocket size information (data not shown).

3.2 Prediction on the remaining ligand types
Using the optimized parameters in the previous section, we bench-

marked Patch-Surfer2.0 for the rest of the ligand types in the binding

pocket database. Table 2 shows the average accuracies for the re-

maining 110 ligand types.

Top 10 and Top 15 average accuracies are 0.417 (0.438) and

0.526 (0.547). In the parentheses, the average accuracy for all the

117 ligand types are shown, since these are the accuracy that will be

experienced in practical prediction situations by users. Although

these accuracies are lower than the results on the training set in

Table 1, considering that the large number of pockets and ligand

types stored in the ligand database these accuracy values are useful

in practical applications. Indeed as we see later in more detail,

Patch-Surfer2.0 outperformed existing methods. In Table 2, we

also show the results when similar ligands are grouped by

SIMCOMP. The cutoff values used (0.72–0.50) make modest and

reasonable grouping of ligands. Even a SIMCOMP score of 0.50

clusters only ligands with up to a few atom changes: for example,

monosaccharides including glucose and mannose are grouped but

not combined with sucrose or phosphono-fructopyranose, and

NADH is grouped with NADP but not clustered with ATP. Thus,

biologically meaningful separation of ligands is still maintained with

a lower cutoff value of grouping. When ligand groups are

considered, ligands in the same group are considered as ‘identical’

molecule when accuracy is computed. With the ligand grouping

with a SIMCOMP score of 0.5, Top 5 and Top 10 accuracy reached

0.46 and 0.63, respectively.

Until now we reported average accuracy over different ligand

types. Next we take a closer look at the results for different ligands.

Prediction accuracy can vary considerably from ligand to ligand.

Among the 117 ligand types, 28 ligands (25.5%) have an accuracy

of over 0.7 in Top 10 accuracy, while it was 0.0 for 15 ligands

(13.6%). Figure 4 shows five ligands that were predicted well and

four that were predicted poorly. The five well-predicted ligands are

diverse in structures and functions, including natural ligands and

their analogs, and drug molecules. These include not only rigid

Fig. 2. Average accuracy relative to k and w1 values. Each line corresponds to

a result with different w1. A, Top 10; B, Top 15 accuracy

Table 1. The average accuracies by different scores

Top 5 Top 10 Top 15 Top 20 Top 25

TScore 0.562 0.760 0.871 0.914 0.932

MScore 0.552 0.754 0.849 0.898 0.931

pd3DZD 0.484 0.621 0.724 0.891 0.933

APPS 0.538 0.674 0.818 0.894 0.920

GRPD 0.410 0.488 0.616 0.737 0.855

PatchSurfer 0.491 0.658 0.785 0.860 0.895

Fig. 3. Comparison of accuracy with and without ligand similarity weight in

Pocket_Scorew

4 X.Zhu et al.
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ligands but also flexible ones with multiple rotatable bonds and are

observed to bind different targets in different conformations.

We examined whether the prediction accuracy deteriorates for

binding pockets for flexible ligands. We define the ligand flexibility

ratio as the number of rotatable bonds per heavy atom. Overall, we

see a weak trend; the correlation coefficient between the ligand

flexibility ratio (Supplementary Table S1) is �0.45 and �0.50 for

Top 10 and Top15 accuracy, respectively. Ligand binding is difficult

to predict if ligands are too flexible as the four failed cases in

Figure 4. In particular, 1PG and 12P are extreme: they have 14 and

37 rotatable bonds and ligand flexibility ratio of 0.82 and 0.92, re-

spectively (by comparison, the ligand flexibilities of 017, GNP and

NDP, are 0.32, 0.25 and 0.27, respectively). However, 1PG and 12P

are polyethylene glycols, which are precipitants in sample prepar-

ation for X-ray crystallography and are not relevant to biological

functions of the proteins. We found other polyethylene glycols, 2PE,

P33, PE4, 1PE, P6G, 15P as well as two similar molecules, C8E and

PG6, have a flexibility ratio over 0.8 and have poor prediction ac-

curacy of below 0.125 for Top 10 accuracy (except for C8E whose

accuracy was 0.375). The other two poorly predicted ligands, TAM

and 1PS, are molecules commonly used as buffers. Thus, the poor

prediction results for the four ligand molecules may be reflecting the

fact that the molecules in precipitant or buffer bind non-specifically

to proteins.

Removing flexible ligands increases the prediction accuracy. In

Table 3, we show the accuracy when 10 ligands with a flexibility

ratio over 0.8 are excluded from the queries. Compared with the re-

sults in Table 2, Top 10 accuracy has improved from 0.438 to 0.472

for the all 107 ligands and 0.628 to 0.663 when ligands were

grouped with SIMCOMP score of 0.5. Because the extremely flex-

ible ligands are not relevant to biological functions of target proteins

and also grouping with SIMCOMP score of 0.5 only groups similar

ligands, the last row of Table 3 is the accuracy that is most relevant

to practical use of Patch-Surfer2.0. In Supplementary Table S2, the

accuracy was computed after further excluding flexible ligands,

which have a flexibility ratio over 0.7, 0.6 and 0.5. The accuracy im-

proved after more ligands were excluded but the largest improve-

ment was observed when the 10 ligands with the flexibility ratio

>0.8 were excluded.

3.3 Prediction for apo proteins
We have further compared Patch-Surfer2.0’s performance on 32 apo

proteins with their counterpart of the holo proteins in the binding

pocket database (Supplementary Table S3). The results (Table 4;

Supplementary Table S3 and Fig. S3) show that the accuracy for apo

target proteins was not deteriorated, rather, higher than the results

for holo proteins. This is interesting but consistent with our previous

work (Sael and Kihara, 2012).

3.4 Comparison with other existing methods
In our previous papers, we have reported that the accuracy of the

original Patch-Surfer is higher than Pocket-Surfer (Chikhi et al.,

2010) and four other similar pocket descriptors, 2D and pseudo-

Zernike descriptors, Legendre moments and spherical harmonics

(Sael and Kihara, 2012). Moreover, Patch-Surfer also showed better

prediction performance than the four existing methods eFseek,

SiteBase, PROSURFER and XBSite2F (area under the curve, AUC,

was 0.86 for Patch_Surfer, and 0.49, 0.60, 0.57 and 0.55 for the

four methods, respectively; Kihara et al., 2011). Additionally, in

Table 5, Patch-Surfer2.0 was compared with eF-Seek and a recently

developed method, APoc (Gao and Skolnick, 2013). Fifteen ligands

were used for this comparison.

Patch-Surfer2.0 showed higher relative partial AUC (Table 5)

than eF-Seek for all but one ligand. In comparison with APoc,

Table 2. Average predictive accuracies for the remaining ligand

types and the all ligand types

Top 5 Top 10 Top 15 Top 20 Top 25

110 ligands 0.234 0.417 0.526 0.592 0.642

117 ligandsa 0.254 0.438 0.547 0.611 0.659

Group (72)b 0.325 0.499 0.603 0.675 0.734

Group (65) 0.371 0.538 0.642 0.711 0.772

Group (60) 0.402 0.578 0.678 0.744 0.796

Group (55) 0.431 0.610 0.711 0.771 0.821

Group (50) 0.459 0.628 0.726 0.791 0.835

aAll 117 ligands were used including the seven ligand types in Table 1.
bAccuracies were calculated for ligand groups clustered with a SIMCOMP

similarity score of 0.72, 0.65, 0.60, 0.55 and 0.50. All 117 ligand types were

used.

Fig. 4. Ligand types that were predicted with high or low accuracies. The first

five ligands, 017 to NAG, have over 0.9 Top 10 accuracy. The latter four lig-

ands, 1PG to 1PS, have an accuracy of 0.0 at Top 25 or Top 20 accuracy.

Ligands are specified with the PDB codes: 017, darunavir; NDP, NADPH

Dihydro-Nicotinamide-Adenine-Dinucleotidephosphate; SF4, iron-sulfur clus-

ter; NAG, N-acetyl-D-glucosamine; 1PG, methoxy-polyethylene glycol; TAM,

tris-aminomethane; 12P, dodecaethylene glycol; 1PS, 3-pyridin-1-ium-1-ylpro-

pane-1-sulfonate

Table 3. Accuracy excluding ten extremely flexible ligands

Top 5 Top 10 Top 15 Top 20 Top 25

100 ligandsa 0.252 0.452 0.567 0.635 0.683

107 ligands 0.272 0.472 0.587 0.653 0.699

Group (72) 0.345 0.531 0.637 0.706 0.756

Group (60) 0.426 0.613 0.707 0.767 0.807

Group (50) 0.487 0.663 0.754 0.810 0.845

aTen flexible ligands were removed from queries used in Table 2.

Large-scale binding ligand prediction by Patch-Surfer2.0 5

 at E
li L

illy &
 C

om
pany on February 16, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

Figure 4. Ligand types that were predicted with high or low accuracies. The first five ligands, 017 to NAG, have over 0.9 Top 10 accuracy. The latter four ligands, 1PG to 1PS, have an accuracy of 0.0 at Top 25 or Top 20 accuracy. Ligands are specified with the PDB codes: 017: darunavir; NDP: NADPH Dihydro-Nicotinamide-Adenine-Dinucleotidephosphate; SF4: iron-sulfur cluster; NAG: N-acetyl-D-glucosamine; 1PG: methoxy-polyethylene glycol; TAM: tris-aminomethane; 12P: dodecaethylene glycol; 1PS: 3-pyridin-1-ium-1-ylpropane-1-sulfonate.
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Table 5. Comparison with two existing methodsa The number of query pockets used for the comparison with eF-Seek (left) and Apoc (right). The numbers are different because common entries between the pocket databases by Patch-Surfer2.0 and eF-Seek were used as queries. Only 1 number is shown when the number were the same for eF-Seek and Apoc. The average Area Under the Curve (AUC) of Receiver Operator Characteristic of these number of queries are shown. b For the performance comparison with eF-Seek, we computed partial AUC (pAUC) that is the AUC computed up to the maximum false positive rate (FPR) against the pAUC of the random retrieval up to the same FPR. Thus, rel_pAUC &equals; pAUC/pAUCrandom where pAUC &equals; AUC/(1.0*maxFPR). c APoc was run locally using the same database as Patch-Surfer2.0.
 caption
s
http://bioinformatics.oxfordjournals.org/


Patch-Surfer2.0 showed higher AUC for 13 ligands and a tie for

NAD. The average relative partial AUC and AUC by Patch-

Surfer2.0 for the latter 10 ligands (ACR to PMP) were not lower

than those for the first five (AMP to NAD), which were used for par-

ameter optimization.

3.5 Examples of predictions
Finally, we show several examples of Patch-Surfer2.0 predictions. In

Supplementary Table S4, we show a typical example of a search re-

sult. The query was a NAD binding pocket (glucose dehydrogenase,

1gco_A). Among the top ten matched pockets, four of them bind

NAD, three of them bind nicotinamide-adenine-dinucleotide phos-

phate (PDB code: NAP) or nicotinic acid adenine dinucleotide

(DND), which are similar to NAD with SIMCOMP score of 0.88

and 0.87, respectively. The rest of the three ligands are BEI

(Inhibitor Bea322) and two cases where multiple small ligands bind

to the pockets. BEI is similar to NAD in size and has two aromatic

rings as NAD does. The latter two cases show similarity to NAD in

terms of size when the total size of ligands in the pockets is con-

sidered and has common local structures.

Figure 5 shows examples of ligand binding pockets identified at

a high rank for query pockets. Figure 5A and B are binding pockets

for S-adenosylmethionine (SAM). B1 is an example of retrieved

pocket that has a similar global structure as well as similar pocket

shape to the query protein. In contrast, B2 is a case that the retrieved

protein is not structurally similar and also the ligand binds in a

different conformation from the query, which indicates that the

pocket shape is different to the query. In the second example, Figure

5C and D are NAD binding pockets. Both of the two retrieved pock-

ets, D1 and D2 are from different global structures. TM-score

(Zhang and Skolnick, 2005) is less than 0.5 for both proteins to the

query. The first one (Fig. 5D1) has a similar pocket shape with an

RMSD of NAD of 1.0 Å, while the second one (Fig. 5D2) binds

NAD in a different conformation. These examples illustrate that

Patch-Surfer 2.0 identifies pockets of the same ligand type that have

different overall shapes and locate in a protein of globally different

structures.

4 Discussion and conclusion

We have presented Patch-Surfer2.0, which compares a query pocket

to known ligand binding pockets and predicts binding ligand mol-

ecules for the query. Among the five major technical improvements

that have driven the method to achieve substantially higher accuracy

than the original Patch-Surfer, APPS had the largest contribution to

the highest accuracy among the individual score components. APPS

captures not only positions of patches in a pocket but also reflects the

size of the pocket. By using a patch representation of pockets, Patch-

Surfer2.0 recognizes pockets for the same ligand by identifying com-

mon local regions in pockets, even if the global folds of the proteins

are different and the pockets do not share a common global shape.
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Table 4. Accuracy of holo and apo proteins.

Top 5 Top 10 Top 15 Top 20 Top 25

holo 0.250 0.375 0.500 0.625 0.719

apo 0.344 0.594 0.688 0.750 0.844

Ligand binding residues for holo proteins were taken from their apo

counterpart.

Table 5. Comparison with two existing methods

Ligands AMP ATP FMN GLC NAD ACR

Number of pocketsa 43/46 38/44 48/49 15/27 38/39 5/8

Rel. P-S2.0 2.94 3.93 4.47 2.24 11.15 12.39

pAUC eFSeekb 0.12 0.18 0.61 2.04 0.24 7.50

AUC P-S2.0 0.74 0.78 0.80 0.61 0.88 0.88

APocc 0.64 0.75 0.76 0.45 0.88 0.64

ADN ANP BCN GLO HEC MLT MPO PLP PMP

14/15 33 4/6 5/6 12/13 15/18 7 29/30 6/7

2.64 5.10 2.95 26.6 14.1 3.05 2.73 7.10 3.27

0.52 0.31 8.35 9.86 2.02 1.13 0.76 0.64 0.25

0.69 0.81 0.79 0.93 0.85 0.65 0.66 0.80 0.72

0.61 0.77 0.48 0.81 0.68 0.43 0.36 0.66 0.90

aThe number of query pockets used for the comparison with eF-Seek (left)

and Apoc (right). The numbers are different because common entries between

the pocket databases by Patch-Surfer2.0 and eF-Seek were used as queries.

Only one number is shown when the number were the same for eF-Seek and

Apoc. The average AUC of receiver operator characteristic of the number of

queries are shown.
bFor the performance comparison with eF-Seek, we computed partial AUC

(pAUC) that is the AUC computed up to the maximum false-positive rate

(FPR) against the pAUC of the random retrieval up to the same FPR. Thus,

rel_pAUC¼ pAUC/pAUCrandom where pAUC¼AUC/(1.0*maxFPR).
cAPoc was run locally using the same database as Patch-Surfer2.0.

Fig. 5. Examples of identified pockets. A is the query, 2plw-A that binds SAM.

B1 and B2 are retrieved pockets for 2plw-A at the rank 1 and 6, respectively,

3dou_A and 1zq9_A. The TM-Scores between the query and the two proteins

are 0.86 and 0.56, and the RMSD values of ligands are 0.65 Å and 1.75 Å, re-

spectively. C, a query, 1gco_A. D1 and D2 are retrieved pockets for 1gco_A at

the rank 1 and 8, 1lj8_A and 2jhf_A. TM-scores between the query is 0.40 and

0.38, and RMSD of ligands are 1.00 Å and 2.28 Å, respectively (Color version

of this figure is available at Bioinformatics online.)
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Figure 5. Examples of identified pockets. A is the query, 2plw-A that binds SAM. B1 and B2 are retrieved pockets for 2plw-A at the rank 1 and 6, respectively, 3dou_A and 1zq9_A. The TM-Scores between the query and the two proteins are 0.86 and 0.56, and the RMSD values of ligands are 0.65 &Aring; and 1.75 &Aring;, respectively. C, a query, 1gco_A. D1 and D2 are retrieved pockets for 1gco_A at the rank 1 and 8, 1lj8_A and 2jhf_A. TM-scores between the query is 0.40 and 0.38, and RMSD of ligands are 1.00 &Aring; and 2.28 &Aring;, respectively.
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