
Chapter 13
Error Estimation of Template-Based Protein
Structure Models

Daisuke Kihara, Yifeng David Yang, and Hao Chen

Abstract The tertiary structure of proteins provides rich source of information
for understanding protein function and evolution. Computational protein tertiary
structure prediction has made significant progress over more than a decade due
to the advancement of the techniques and the growth of sequence and structure
databases. However, methods for assessing quality of predicted structure models
are not well established. Quality assessment of structure models is important for
reranking and selecting the best possible models from a pool of models as a post-
processing step in structure prediction, and thus many methods are developed in
this direction. Recently, it is also recognized that the model-quality assessment is
crucial for practical use of a model such as design and interpretation of biochemical
experimental data. For such practical application of a computational model, the real-
value quality of the model should be predicted, which is different from reranking
alternative models. The quality (error) of a model determines its potential practical
application, ranging from protein design, designing site-directed mutagenesis exper-
iments, ligand–protein docking prediction, to function prediction from structure. In
this chapter, we discuss importance of the real-value error estimation and overview
the existing methods.

13.1 Introduction

Protein tertiary structure prediction from amino acid sequence has made steady
progress due to advances in techniques as well as the increase in the number of
known solved structures available for templates for modeling. Now it is often pos-
sible to build atomic-detailed models which can be used for redesigning protein
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function (Ashworth et al. 2006). However, predicting an accurate atomic-detailed
model is still not always possible. Depending on the techniques employed and
available template structures for modeling, the accuracy of a model ranges from an
root mean square deviation (RMSD) of 1.5–2 Å (typically in comparative modeling
using a closely related template to the target) to 6 Å (threading) to its native struc-
ture and even over 10 Å in case when the prediction goes significantly wrong. In
the latest Critical Assessment of Techniques in Structure Prediction (CASP) exper-
iment that was documented on Proteins (CASP7 held in the summer 2006), the
average GDT-HA score of models submitted by the top five groups in the template-
based modeling (TBM) category was 50.3 (Kopp et al. 2007). In the free-modeling
(FM) category, the average GDT-TS score of the top groups was around 30–40,
as read from Fig. 13.2B of the assessors’ report (Jauch et al. 2007). The GDT-HA
and the GDT-TS scores are defined as the average of the percentage of residues
which do not deviate from the target structure by more than four threshold values,
0.5, 1.0, 2.0, and 4.0 Å for GDT-HA and 1.0, 2.0, 4.0, and 8.0 Å for the GDT-TS.
Thus, very roughly speaking, the CASP results imply that on average about half of

Fig. 13.1 Definition of the SPAD score. SPAD quantifies the diversity of suboptimal alignments
around the optimal alignment of a target and a template protein. The difference (distance) of a
position in an alignment as compared with an alternative alignment is computed on a dynamic
programming (DP) matrix. The target protein sequence is placed on the horizontal axis while the
template protein is aligned on the vertical axis. The thick line represents the DP path of the optimal
alignment of the two proteins. The distance from a position in the optimal alignment to the i-th
suboptimal alignment is defined as the average of the horizontal (diH) and the vertical (diV) distance
to the i-th suboptimal alignment. The local SPAD score for a position in the optimal alignment is
the average of the distance to the set of suboptimal alignments considered. Then, the global SPAD
score of the optimal alignment is defined as the average of the local SPAD score of each position in
the alignment. In principle, the computation of SPAD is applicable for any threading method that
uses the dynamic programming



13 Error Estimation of Template-Based Protein Structure Models 297

residue position in a model is “correct” in the TBM, while only about one-third of
residues are predicted correctly in the FM. Therefore, it should be realized that a
computational model may have significant errors even if it is constructed by current
state-of-the-art methods.

Methods for error estimation or quality assessment of structure models have
drawn much attention in recent years (Kihara et al. 2009). Roughly speaking, there
are three purposes or types of quality assessments of protein structure models. First,
in structural biology, stereochemical properties of experimentally solved structures
are routinely examined. The second type is to rerank predicted models, i.e., evalu-
ating relative accuracy among the models, such that the most native-like structure
can be selected from a pool of constructed models. The third purpose is to pre-
dict the real-quality value of a model, such as an RMSD value of the model to
the native structure. These three purposes have significant overlap between each
other but they are not identical. Thus, methods developed for one purpose is not
necessarily suitable for the other purposes.

In experimental structural biology, validation of tertiary structures built from
experimental data is an important step. Thus, earlier works on protein structure vali-
dation focused on identifying potential errors in models built from X-ray diffraction
patterns of protein crystals. Tools developed for that purpose include PROCHECK
(Laskowski et al. 1993), MOLPROBITY (Davis et al. 2004), protein volume eval-
uation (PROVE) (Pontius et al. 1996), and WHATCHECK (Hooft et al. 1996).
These methods compare stereochemical properties of a protein structure, such
as the bond length, bond angles, hydrogen bonds, and atom clashes, with their
regular values sampled from a set of representative protein structures of a good
resolution. The same methods could be applied to assess the quality of predicted
structures (Bhattacharya et al. 2008). However, it may not always be suitable to
use these validation tools for analyzing predicted structures because these tools
concern small deviations of distances or angles, which is the level of the accu-
racy that may not be meaningful to expect for predicted structures of a moderate
accuracy.

The second type of the model-quality assessment, reranking of predicted mod-
els, is most well studied recently in the context of protein structure prediction. In
a procedure of structure prediction, particularly in ab initio structure prediction,
which usually generates a large number of alternative models, selecting a few most
native-like models is essential. Of course each structure prediction method has its
own scoring function that guides building models, but an outside measure specific
for quality assessment could often offer useful evaluation. For example, clustering
of models to find out most populated folds is proven to be an effective metric of
selecting near-native models (Betancourt and Skolnick 2001; Shortle et al. 1998). In
addition, reranking of models is also an important step in a meta-server approach,
where models generated by different methods are compared and often combined
(Kolinski and Bujnicki 2005). To rerank models, various aspects of the models are
evaluated, ranging from structures and energetic terms in atomic-detailed levels, in
residue levels, in global-fold levels, and often in sequence-alignment levels. In the
next section we briefly discuss structural characteristics used as scoring terms in
quality assessment.
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The third type of quality assessment, i.e., prediction of real value of quality of
models (e.g., the RMSD value to the native structure), is relatively less studied.
Methods for the previous two types are not necessarily suitable for predicting a
real-quality value of a model, because the accuracy of detailed stereochemical prop-
erties (i.e., the first type) does not guarantee global structural similarity of a model
to the native (Wroblewska and Skolnick 2007; Melo and Sali 2007). Interestingly, it
is demonstrated that structure models of a wrong fold can have good detailed stere-
ochemical structures (Wroblewska and Skolnick 2007). Moreover, the best-ranked
model among a given pool, which is identified by the second type of the quality
assessment method, may not have a certain value of the RMSD, e.g., less than 3 Å.
To predict a real value of quality of models, the same structural characteristics used
in model reranking methods could be employed. However, real-value quality predic-
tion would be more difficult because most of the quality assessment measures do not
have rationale to have a good correlation to the absolute value of the model quality.
Exceptions would be terms that evaluate target–template alignment, a typical one
being the sequence identity between the target sequence to be modeled and a tem-
plate protein. The relationship between the sequence similarity of and the structural
divergence of proteins is well established (Chothia and Lesk 1986; Wilson et al.
2000).

The real-value quality assessment methods would be most useful for biologists
who would like to practically use structure models to aid their wet-lab experiments.
If the accuracy of a model can be predicted, it can be used for an appropriate pur-
pose according to its estimated accuracy. It is important to note that a low-resolution
model is still useful for certain purposes (Baker and Sali, 2001). High-resolution
models with an RMSD of 1–1.5 Å are useful for almost any application where a ter-
tiary structure of a protein can be useful, including for studying catalytic mechanism
of enzymes, for structure-based protein engineering, and for drug design. A model
of an RMSD of around 4 Å is still useful, for example, for designing site-directed
mutagenesis experiments (Wells et al. 2006; Skowronek et al. 2006), chemical
labeling, and for performing small-ligand-docking predictions (Wojciechowski and
Skolnick, 2002; Vakser 1996). If the fold of a model is expected to be correct (an
RMSD of about 6 Å), function of the protein could still be predicted using the pre-
dicted tertiary structures (Baker and Sali 2001; Skolnick et al. 2000; Hawkins and
Kihara 2007; Kihara and Skolnick 2004). Therefore, it is important to establish real-
value quality estimation methods, so that a model can be used wisely by knowing
the limitations of the model. In this chapter, we will focus our review on the quality
assessment methods of this type, as the methods of the other two types are recently
thoroughly reviewed in another article (Kihara et al. 2009).

13.2 Overview of Quality Assessment Measures

We first briefly overview the structural characteristics used as scoring terms in
quality assessment. For more details please refer to the recent review (Kihara et al.
2009).
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13.2.1 Physics-Based Score

One of the most straightforward ways for assessing model quality would be
to employ physics-based all-atom force field. Previous works range from using
molecular mechanics energy (Kmiecik et al. 2007) to free-energy computation
of structure models, including the molecular mechanics–Poisson–Boltzmann sur-
face area (MM-PBSA) free-energy (Lee et al. 2001; Feig and Brooks III 2002),
MM-Generalized Born implicit solvation model with a surface area-dependent term
(MM-GBSA) (Wroblewska and Skolnick 2007; Feig and Brooks III 2002), the
Explicit simulation/implicit solvent (ES/IS) method, which computes the solva-
tion free energy from short molecular dynamics simulations with explicit solvent
(Vorobjev and Hermans 2001), and the colony energy approach combined with
the MM-PBSA, which assesses conformational entropy by explicitly sampling the
conformational space in the vicinity of a reference structure (Fogolari and Tosatto
2005). Wroblewska and Skolnick showed that reoptimization of relative weights of
energy components of the AMBER force field yielded significant improvement for
scoring and refinement of protein models (Wroblewska et al. 2008).

13.2.2 Knowledge-Based Potential

Alternatively, structure models can be evaluated using knowledge-based statistical
potentials. A knowledge-based potential considers preference of a certain struc-
tural property of atoms or amino acid residues in protein structures by counting
the number of observed cases of the property, which is then normalized by the
expected number of counts. Many different types of knowledge-based potentials are
developed, including atom- or residue-contact potentials, main-chain torsion angles
(Betancourt 2008; Tosatto and Battistutta 2007), atom/residue-level burial/exposure
preference (Holm and Sander 1992), atom/residue-packing preference (Gregoret
and Cohen 1991; Melo and Sali 2007), and the accessible surface area of residues
of atoms/residues (Melo and Feytmans 1997; McConkey et al. 2003; Melo et al.
2002). Atom- or residue-contact potentials would be among the most well studied.
Pioneer works were carried out by Sippl using knowledge-based contact poten-
tials for identifying errors in protein crystal structures (Hendlich et al. 1990; Sippl
1993). In principle, knowledge-based atom-contact potentials are designed to eval-
uate structures with an atomic-level accuracy, but they are shown to have good
performance on predicted structures of a moderate accuracy as well (Melo and
Feytmans 1997; Pettitt et al. 2005; McConkey et al. 2003). When models are not
expected to have atomic detail-level accuracy, examining residue contacts could
be advantageous for quality assessment (Melo et al. 2002). Verify3D assesses
structural environment of residues which are defined by a combination of the sec-
ondary structure, burial status, and polarity of positions in a structure (Eisenberg
et al. 1997).
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13.2.3 Assessing Alignment Quality

In parallel to the structure-based terms, scores which assess the validity of the align-
ment between a target and a template are effective in the case of template-based
modeling. Simply, the quality of a target–template alignment can be evaluated by
considering the significance of alignment raw scores, such as the sequence identity,
the Smith–Waterman alignment score, or a threading score between a target and
a template (in the case of threading). More frequently, statistical significance of a
raw score is considered, e.g., the E-value in BLAST (Altschul et al. 1990) or the
Z-score used in threading algorithms. The Z-score of a raw alignment score is also
obtained from a distribution of alignment scores from shuffled sequences (Pearson
and Lipman 1988). Similarly, for predicting quality of local regions, raw scores local
alignment regions can be used (Tress et al. 2003; Zhang et al. 1999; Lee et al. 2007;
Tondel 2004).

Another strategy to estimate the reliability of an alignment is to compare it
explicitly with alternative alignments of the same pair of sequences, i.e., to consider
consistency with suboptimal alignments (Mevissen and Vingron 1996; Vingron and
Argos 1990; Vingron 1996; Saqi and Sternberg 1991; Jaroszewski et al. 2002; John
and Sali 2003). Instead of explicitly computing numerous suboptimal alignments,
several other methods provide a probability (reliability) to each position in an align-
ment. Examples are those which use the partition function to express the probability
of alternative alignments (Zhang and Marr 1995; Schlosshauer and Ohlsson 2002;
Miyazawa 1995; Koike et al. 2004) and ones using hidden Markov models (Yu and
Smith 1999; Cline et al. 2002). Recently, we have also developed a quality assess-
ment score based on the consistency of a target–template alignment with suboptimal
alignments, named SPAD (SuboPtimal Alignment Diversity) (Chen and Kihara
2008). SPAD quantifies divergence of suboptimal alignments around the optimal
alignment on the Dynamic Programming matrix. It was shown that the SPAD score
has a significant correlation not only to alignment shift-level errors but also to global
and local structural-level errors (i.e., RMSD to the native structure and the distance
of corresponding residues of a model and its native structure) of structure models
built based on optimal alignments. We will explain SPAD in the next section in more
detail.

13.3 The SPAD Score

13.3.1 Definition of the SPAD Score

Figure 13.1 shows how the SPAD score is defined. When an alignment between a
target sequence and a template structure is computed by the dynamic programming
(DP) algorithm (Needleman and Wunsch 1970), the alignment is represented as a
path in the DP matrix. In Fig. 13.1, the top-scoring (i.e., optimal) target–template
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Fig. 13.2 Examples of estimated global and local errors by the SPAD score. Prediction structures
of two CASP7 targets produced by our group, Chen-Tan-Kihara, are shown. The left panels are
superimposition of the predicted (black) and the native (gray) structures of the target. The middle
panels show the predicted (dotted line) and the actual (solid line) Cα distance error of the models.
The right panels show the sausage representation of models, where the radius of the tube is pro-
portional to the estimated Cα distance error. (a) A model for T0367. The native structure is 2hsbA,
of which the length is 125 amino acids. The model used 1ufbA as the template. The global RMSD
of the model is predicted to be 4.3 Å, while the actual RMSD of the model to the native is 3.9 Å.
(b) A model for T0378 (native: 2i6dA, the length: 254 amino acids). The template of the model is
1x7oA. The actual/predicted RMSD of the model to the native is 3.6/3.9 Å

alignment is represented as a thick path from the left upper corner to the right bottom
corner. As a set of suboptimal alignments are also represented as their own paths,
the consistency of a position in the optimal alignment as compared with subopti-
mal alignments can be quantified by counting the number of grid cells between the
paths. Thus, the local SPAD score of a certain position m (lSPADm) in the optimal
alignment is defined as:

ISPADm =

n∑
i=1

IALDi
m

n
(13.1)

where lALDi
m is the distance at the position m in the optimal alignment to the

suboptimal alignment i, which is defined as IALDi
m = diV+diH

2 (Fig. 13.1). n is
the number of suboptimal alignments considered. Averaging lSPADm over all the
positions in the optimal alignment yields the global-level SPAD, gSPAD:
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gSPAD =

1∑
m=1

ISPADm

l
(13.2)

where l is the length of the optimal alignment. Suboptimal alignments are com-
puted by the algorithm proposed by Vingron and Argos (1990). In their algorithm,
the maximal number of possible suboptimal alignments of a pair of sequences of
the length M and N is M×N, because for each cell in the DP matrix (i.e., each
pair of residues from the two sequences), it computes the optimal alignment which
goes through the cell. The number of suboptimal alignments considered, n, is set to
n = 0.1 × M × N (i.e., top 10% high-scoring suboptimal alignments). A profile–
profile alignment (Wang and Dunbrack Jr 2004) is employed to compute optimal
and suboptimal alignments of a target and a template, which uses a profile-matching
score and the secondary structure-matching score (Chen and Kihara 2008).

13.3.2 Correlation of SPAD to RMSD of Models

We prepared a large dataset of 5,232 template-based structure models and examined
how well SPAD correlates with global and local qualities of the models. Models
of a variety of quality are obtained by using template structures of three similarity
levels to target proteins, i.e., those in the same family as targets, the same superfam-
ily, and the same fold. Target–template alignments are computed by the in-house
profile–profile alignment program mentioned above and MODELLER (Eswar et al.
2008) was used to construct the tertiary structure of the model from the alignments.
The correlation coefficient computed for log–log plots of the RMSD of the mod-
els relative to SPAD (Eq. (13.2)) is 0.598, 0.630, and 0.384, for the models using
templates of the family, the superfamily, and the fold-level similarity, respectively
(refer to Table 13.2A in Chen and Kihara (2008)). These correlation coefficient val-
ues are shown to be much more significant than the other sequence alignment-based
measures, which are the sequence identity, the threading Z-score, and the Z-score
by PRSS (an alignment shuffling program) (Pearson and Lipman 1988). Moreover,
interestingly, SPAD has more significant correlation than the discrete optimized
protein energy (DOPE) score (normalized by the number of atom contacts), the
target function of the MODELLER, to the RMSD in the models constructed with
templates in the family and the superfamily-level similarity. The correlation of the
normalized DOPE score to the RMSD is 0.453, 0.617, and 0.587 in the family, the
superfamily, and the fold-level template models. This implies a dominant influence
of the alignment quality on the final structural quality in the structure modeling
process in MODELLER.

13.3.3 Correlation to the Local Quality of Models

We also examined the correlation of the local SPAD score (Eq. (13.1)) to the local
quality of models, which is defined as the Euclidean distance between corresponding
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Cα atoms of the model to the native structure when they are globally superimposed.
The correlation is 0.565, 0.509, and 0.277 for models which used templates in the
family, the superfamily, and the fold-level similarity. These values are not as signif-
icant as that of the global SPAD to the RMSD, however, much higher than the other
simple local alignment-based scores, such as the conservation in multiple sequence
alignments, the ratio of gaps in the alignment position, and the average BLOSUM
score of the alignment position (Table 13.2B in Chen and Kihara (2008)). According
to the linear correlation we observed in the log–log plots of the SPAD score and the
RMSD and the local Cα distance error, two equations are obtained:

RMSD = exp(0.3576 × ln (global SPAD) + 1.882) (13.3)

Cα distance error = exp(0.3294 × ln (local SPAD) + 1.645) (13.4)

Figure 13.2 shows two examples of actual prediction of the global RMSD and the
local Cα distance error of structure models using the two equations. These two struc-
ture models are predicted for targets T0367 and T0378 in the CASP7. The in-house
profile-based threading program was used to find the template and make the align-
ment, which was followed by running MODELLER to build the structural model.
In these examples, the global RMSD of the models are predicted quite well. The
predicted Cα distance error (the middle panels) captures poorly predicted regions,
although the absolute value of the predicted and actual error did not agree well in
some regions. What are shown in the right panel are the sausage representations of
the models, which intuitively represent predicted Cα distance error as well as the
overall fold of models.

13.4 Real-Value Quality Assessment of Structure Models

In this section, we overview three quality assessment methods which predict real-
value quality. At last, we introduce a method we recently developed, named
SubAqua (Subotpimal Alignment-based quality assessment method), which uses
the SPAD score as a main component of its scoring term.

13.4.1 Tondel’s Method

Tondel showed that the global RMSD and the total residue contact area of homol-
ogy models can be well predicted by a regression model which combines sequence
alignment-based scores between a target and a template (Tondel 2004). The scores
employed are the sequence identity, the number of non-aligned residues in the
target–template alignment, and an amino acid similarity score (PAM250) of each
position in the alignment. The method was tested on a set of homology models of
kinase, whose RMSD to the native varies in a relatively small range from 1 to 7 Å.
Since the score of each alignment position is used as variables in the regression
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model, this method can be only applied to the specific protein family for which
the regression model is built for. However, as the author discusses, it is possible to
construct a regression model for each major protein family.

13.4.2 ProQ

ProQ uses neural network to predict real value of two structure similarity scores, the
LGscore (Cristobal et al. 2001) and the MaxSub score (Siew et al. 2000) to the native
structure (Wallner and Elofsson 2006). They found that combining different types
of quality assessment measures improves the accuracy of the correct fold prediction.
They combined seven terms of different natures that range from those for describing
coarse-grained to atomic-detailed structural features of a model. Two terms are for
capturing overall global features of a model: the fraction of the protein modeled and
the fatness, which is the ratio of the longest and the shortest axes when the structure
is fit to an ellipsoid. Two other terms are for describing main-chain level features:
the agreement of the model to the template structure as measured by LGscore or
MaxSub and the agreement of the actual and predicted secondary structure of the
model. In addition, two residue-level features are combined: the fraction of residues
in four different bins of accessible surface area and the fraction of residue–residue
contacts classified into four categories. Finally, an atomic-detailed structural feature
is captured by the fraction of atom–atom-contact types observed in the model.

13.4.3 TVSMod

Eramian et al. developed a method named TVSMod, which predicts the RMSD
as well as the number of correctly predicted residues in a model (residues locat-
ing within 3.5 Å to the corresponding residues in the native structure, named
No3.5 Å) using support vector machine (SVM) regression, which combines up
to nine alignment and structure features (Eramian et al. 2008). The nine features
are the sequence identity between a target and template, the percentage of gaps
in the target–template alignment, a distance-dependent residue-contact potential, a
distance-dependent atom-contact potential (DOPE), a residue-based accessible sur-
face statistical potential score, a composite score named GA341, which combines
residue-level contact and accessibility scores and a score measuring structural com-
pactness, and the sequence identity (John and Sali 2003), and agreement scores
of prediction and actual secondary structure of the model. The residue- and atom-
contact potential values and the composite score are normalized by computing the
Z-score referencing a score distribution of 200 random sequences with the same
amino acid composition and the structure as the query model. Consistent with the
paper of ProQ (Wallner and Elofsson 2006), they reported that combination of these
scores improve the accuracy although each individual score does not have a strong
correlation to the RMSD and No3.5 Å.
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TVSMod also uses SVM. SVM is trained in a model-specific fashion, that is,
SVM is developed using structure models of the similar size and the secondary
structure content as the query model. Interestingly, for an input structure model to
be evaluated, the SVM is trained on the fly using a large database of 5,790,899
template-based models with known quality: First, if the aligned target and template
sequences share more than 85% identity, the system simply predicts an RMSD of
0.5 and 1.0 Å for No3.5 Å without taking any further steps. If the target and tem-
plate are not so closely related, the model database is scanned to find all examples
where the same region of the template was used either as a template or as the target
sequence. A region in a model in the database is considered equivalent with a certain
region in the query model if the starting and the ending residues are each within ten
residues and the difference is within 10% of the length of the query. Subsequently,
those selected models are further filtered by considering similarity of the score
values of the residue- and atom-contact potentials, the residue-based accessible sur-
face area potential, and the composite score for the distance and surface potential
score. Finally, SVM is trained on the tailored training dataset. They reported a high-
correlation coefficient of 0.84 between the predicted and actual RMSD and 0.86 for
predicted/actual No3.5 Å. The advantage of using a query-tailored training dataset
is that the structure-based potentials, e.g., the contact potentials, will be able to have
better correlation to the model-quality values.

13.4.4 The SubAqua Method

Recently we have extended the idea of using suboptimal alignments for model-
quality assessment to develop a better quality assessment method, named SubAqua
(Subotpimal Alignment-based quality assessment method) (Yang et al. 2009). The
webserver is available at http://kiharalab.org/SubAqua/. SubAqua combines the
SPAD score introduced above (Chen and Kihara 2008) with other structure-based
scoring terms. It predicts a global and a local real-value quality measures, the RMSD
value of a model to its native structure, and the error of Cα positions as compared
with corresponding residues when the model is superimposed with the native struc-
ture. Since SubAqua uses suboptimal alignments as one of the scoring terms, it
is more suitable for evaluating template-based models. Below we briefly describe
outline of the work.

13.4.4.1 Correlation of Quality Assessment Terms to RMSD

We first prepared a large dataset of template-based models with a variety of quality,
whose RMSD ranges from around 1 to 20 Å. Pairs of proteins which share the
family, the superfamily, and the fold-level similarity are selected from the Lindahl
and Elofsson’s dataset (Lindahl and Elofsson 2000), which resulted in 1,076, 1,395,
and 2,761 pairs, respectively. Optimal alignments of the pairs are computed using
a profile–profile alignment (Wang and Dunbrack Jr 2004), which are then fed to
MODELLER (Eswar et al. 2008) to build the tertiary structure models.
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Using the dataset of template-based models, first we examined a dozen of quality
assessment measures in terms of the correlation coefficient to the RMSD of mod-
els (Table 13.1). Five different types of measures are examined, those based on
target–template alignments, overall model fold, those concern local residue environ-
ments, stereochemistry of atoms, and composite model-quality assessment scores.
Individual scores are explained in the table legend. What is roughly consistent with
the observation by Eramian et al. (2008) is that none of the individual scores by
itself has a significant correlation to the RMSD of the models in this diverse dataset.
Among the measures examined, the alignment-based scores have relatively higher
correlation over 0.5, which implies strong dependence of the modeling procedure
(by MODELLER) to the quality of target–template alignments. SPAD shows a
better correlation when log-transformed. This may be because the possible alter-
native alignments diverge rapidly as the sequence similarity drops. We also found
that normalizing the Verify3D score by the model length (L) and a square of the
length (L2) improves the correlation and taking the logarithm of Verify3D/L2 fur-
ther improves the correlation to 0.53. It is expected that normalization by the length
improves the correlation since Verify3D is the sum of a residue-based score. The
reason why the normalizing by L2 makes the correlation better might be because
Verify3D implicitly takes residue contacts into account as the environment of a
residue. The other residue-level and atomic-level scores have insignificant corre-
lation to the RMSD. ProQ also shows insignificant correlation to the RMSD, which
is consistent with Table 13.1 in Eramian et al. that reports the correlation coefficient
of 0.57 and 0.44 for ProQ-MX and ProQ-LG (Eramian et al. 2008).

13.4.4.2 Variable Selection for Constructing Regression Models

Next, we employed the forward stepwise variable selection procedure to build a
linear regression model with a meaningful subset of the variables in Table 13.1.
In this procedure, variables are added to the regression model sequentially until
adding more variables makes no significant contribution. The contribution of a vari-
able to a regression model is shown by the partial R2, which indicates how much
more R2 can be explained by adding the variable. Two variables, log(SPAD) and
log(Verify3D/L2), are selected in this order as the most contributing variables to
predict the global RMSD with the model R2 value of 0.586 (Table 13.2). The rest
of the variables, the Z-score by PRSS to the normalized DOPE, are selected with
statistical significance but their contribution to the model judged by the partial R2

is marginal. Therefore, we decided to use only the two variables and the resulting
linear regression model is as follows:

RMSD = −4.99 + 2.25 × log(SPAD) − 2.17 × log(Verify3D/L2) (13.5)

Figure 13.3 shows the relationship between the actual and predicted RMSDs of
the structure models in the entire dataset. The correlation coefficient is 0.77.
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Table 13.1 Correlation coefficient to the global RMSD of structure models

Types of variables Variable
Correlation
coefficient

Alignment Seq. identity 0.58
Length 0.24
PRSS Z-score 0.63
SPAD 0.55
log (SPAD) 0.71

Overall fold Compactness (Sc) 0.19
Residue environment ERRAT 0.35

TAP 0.34
Verify3D 0.09
Verify3D/L 0.45
Verify3D/L2 0.46
log(Verify3D/L2) 0.53

Atom environment DOPE/Nh
2 0.29

ANOLEA1 0.29
ANOLEA2 0.02
PROCHECK1 0.05
PROCHECK2 0.16

Quality assessment scores ProQ-MX 0.39
ProQ-LG 0.31
GA341 0.17
Pg 0.01

Absolute values of the correlation coefficients are shown. Scores with a correla-
tion coefficient of over 0.5 are highlighted in gray. Alignment-based scores are the
sequence identity between the target and the template sequences; the number of
residues of the model, the Z-score of the alignment score computed from a score dis-
tribution of shuffled sequences by PRSS; the SPAD score considers the consistency
of the target–template alignment relative to suboptimal alignments. The compact-
ness is defined as the total volume of each amino acids relative to that of a sphere
with the diameter of the maximum distance of residue pairs (Melo and Sali 2007).
The three residue-level scores, ERRAT, evaluates the number of non-bonded interac-
tions between heavy atoms (Colovos and Yeates 1993); TAP evaluates torsion angle
propensity of amino acids (Tosatto and Battistutta 2007); and Verify3D assesses
the fitness of each residue in a model to its structural environment defined by the
total/poplar burial area and the secondary structure (Luthy et al. 1992). In addition to
the raw Verify3D score, three variations of normalized score by the model length (L)
are also examined. Atomic-detailed structure is examined by four measures: DOPE is
an atom distance-dependent statistical potential (Shen and Sali 2006). Here we nor-
malized DOPE by square of the number of heavy atoms (Nh) in a model. ANOLEA1
and ANOLEA 2 come as output from the ANOLEA method that evaluates atom con-
tact and accessible surface propensity (Melo and Feytmans 1997). PROCHECK1 is
the percentage of residues in the disallowed region in the Ramachandran plot and
PROCHECK2 is the percentage of residues with bad contacts, both of which come
from the PROCHECK program (Laskowski et al. 1993). ProQ-MX and ProQ-LG is
predicted MaxSub and the LG score, respectively, by a neural network-based pro-
gram, ProQ (Wallner and Elofsson 2006). GA341 combines atom contact and solvent
accessibility potentials, the sequence identity, and the compactness score (Sc), and
pG is predicted probability that a model has a correct fold using a Bayesian classifier
which uses Ga341 and the model length (Melo et al. 2002)
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Table 13.2 Variable selection for linear regression model

Step Variable Partial R2 Model R2 P (F)a

1 log (SPAD) 0.499 0.499 <0.001
2 log (Verify3D/L2) 0.087 0.586 <0.001
3 PRSS Z-score 0.014 0.600 <0.001
4 ERRAT 0.010 0.610 <0.001
5 Sc 0.007 0.617 <0.001
6 ProQ-MX 0.004 0.622 0.0001
7 DOPE/Nh

2 0.003 0.624 0.0015

aThe p-value of F-value is another statistical metric to show the sig-
nificance of the contribution of the variable to the regression model.
A smaller p-value means more significant contribution.

Fig. 13.3 Predicted and actual RMSD values of template-based models. Equation (13.5) is used
to predict RMSD

We have also employed logistic regression to predict if a model’s RMSD is
smaller than a certain value (i.e., “correct” structure) or not (i.e., “incorrect” struc-
ture). We used 6.0 Å as the threshold value of the RMSD. The forward variable
selection is used with the same set of variable choices (shown in Table 13.1). Again,
the same two variables, log(SPAD) and log(Verify3D/L2), are selected as the most
significant variables:

log(p/1−p) = −7.93 + 1.62 × log(SPAD) − 1.48 × log(Verify3D/L2), (13.6)
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where p is the probability that a model is correct (i.e., an RMSD of below 6.0 Å). The
model dataset has 1,843 correct models and 3,389 incorrect models. Using the logis-
tic regression model (Eq. (13.6)), 4,376 models (83.64%) are correctly classified
either to correct or incorrect models.

We conclude the followings from these results: First, as also observed by other
related studies, there is no single term which is sufficient by itself to predict the
global RMSD of models (Table 13.1) but combination of the terms improves predic-
tion of RMSD (Table 13.2). Among the quality assessment terms tested, those which
evaluate quality of target–template alignments rather than atom- or residue-based
structural terms have higher correlation to the quality of the models (Table 13.1).
Moreover, the forward stepwise variable selection procedure identified two variables
for constructing linear regression as the most significant contributing terms, namely,
log(SPAD) and log(Verify3D/L2), both of which are evaluating coarse-grained fea-
tures of models (Table 13.2). Adding more structure-based terms including those
which evaluate atomic-detailed structures (ERRAT and DOPE) improves the lin-
ear regression model, however, their contribution is marginal (Table 13.2). We will
further extend the discussion later while summarizing this chapter.

13.4.4.3 Two-Step Procedure to Predict Local Quality

Next, we developed a regression model for predicting local quality of models, i.e.,
the Cα distance between corresponding residues of a model and its native structure.
Individual scoring terms examined do not show significant correlation to the Cα

distance (Table 13.3) and regression models constructed by combining these scores
does not show sufficient correlation, neither. However, we find that the predic-
tion performance show significant improvement when the predicted global RMSD
(Eq. (13.5)) is integrated. The predicted global RMSD correlates relatively well with

Table 13.3 Variable selection for linear regression model for local quality prediction

Step Variable Partial R2 Model R2 P (F) Corr. coeff.a

1 Predicted global RMSD 0.1940 0.1940 <0.0001 0.44
2 Gap ratio 0.0453 0.2393 <0.0001 0.24
3 log (local SPAD/SPAD + 1) 0.0229 0.2622 <0.0001 0.21
4 local Verify3D 0.0066 0.2688 <0.0001 0.32
5 log (localVerify3Dpositive

2 + 1)a 0.0048 0.2736 <0.0001 –0.14
6 Conservationb 0.0038 0.2774 <0.0001 –0.29

Mutation scorec – – – –0.32
Local ERRAT – – – 0.19

aThe correlation coefficient against the Cα distance.
blocalVerify3Dpositive is a non-negative local Verify3D score assigned to each residue; 0 is assigned
when a negative localVerify3D score is replaced with 0.
cThe conservation is the fraction of the most abundant residue at the position in the multiple
sequence alignment of the target protein used for alignment with the template.
dAverage BLOSUM45 score of a column in the profile.
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the Cα distance, with the correlation coefficient of 0.44. Therefore, we designed
a two-step procedure by integrating the predicted global RMSD to predict local
quality of individual residues: First, given a protein structure model, the SubAqua
method predicts the global RMSD using the Eq. (13.5). Then, the Cα distance is pre-
dicted by a linear regression combining the predicted global RMSD, the gap ratio,
and log(localSPAD/SPAD + 1). These three variables are selected by the forward
stepwise variable selection. The resulting regression is as follows:

Cα distance = −4.04 + 0.94 × (predicted RMSD) + 16.59 × (gap ratio)
+3.55 × log(localSPAD/SPAD + 1)

(13.7)

The gap ratio is the fraction of the gaps at the residue position in the multi-
ple sequence alignment and the localSPAD is a measure of the divergence of
suboptimal alignments at a local position, expressed by Eq. (13.1). The pre-
dicted Cα distance using the regression (Eq. (13.7)) showed the correlation
coefficient of 0.51 to the actual Cα distance. Although this correlation coeffi-
cient value is not very large, it does improve that of the predicted global RMSD
alone (0.44).

13.5 Summary

In this chapter, we introduced methods for quality assessment of protein models,
which predict real-value of estimated errors. Quality assessment of protein struc-
ture models has been recently studied increasingly in the context of model selection
(reranking) from a pool of prediction models, which is an important post-processing
step for ab initio structure prediction. What we addressed here are methods that are
closely related but aim at a different purpose – methods for real-value error esti-
mation of single protein structure model, which is crucial information for applying
structure models for practical biological purposes.

Estimating real-value error is probably more difficult than reranking models,
since most of metrics, especially knowledge-based or physical potentials, do not
have clear rationale to be able to indicate the degree of real-value global/local
error of models. Probably only exceptions are sequence alignment-based scores,
including the classical sequence identity between the target and template, which
are empirically known to have a significant correlation to the RMSD of structures
(Chothia and Lesk 1986). Here, we overviewed four methods for real-value quality
assessment. We can learn the followings from these methods: First, as expected, the
sequence alignment-based scores are useful for predicting real-value errors (Tondel,
TVSMod, SubAqua). Moreover, rather than the simple sequence identity between
a target and a template, metrics which evaluate the significance of an alignment in
comparison with alternative alignments (the PRSS Z-score, the SPAD score) cor-
relate better to the RMSD. Second, structure-based terms, in general, particularly
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those which examine atomic-detailed level structures, do not have strong correla-
tion to the real-value errors by itself, but combinations of terms can improve the
correlation (ProQ, TVSMod, SubAqua). Third, to make structure-based terms cor-
relate better to the global RMSD, Tondel and Eramian et al. (TVSMod) presented a
very interesting idea of constructing a query-dependent dataset for training param-
eters of the predicting algorithm (Tondel used regression analysis and TVSMod is
based on SVM). Obviously values of knowledge/physics-based potentials computed
for different proteins cannot be directly compared since the systems are different.
Thus, in order to use such potential values for predicting real-value quality, some
pre-processing (e.g., normalizations) is needed. The idea of the query-dependent
dataset is to only use models with known quality that use the same templates as
the query model in training prediction algorithms, so that the potential values are as
well correlated as what would be expected for decoys of the same protein. Fourth,
predicted global RMSD of a model is a useful variable for predicting local quality
at each residue position (SubAqua). Thus, predicting quality in multiple steps, from
global to local or coarse-grained to finer-grained, seems to be a valid strategy.

The tertiary structure of proteins provides crucial information for elucidat-
ing function of proteins and its mechanism. Computational structure models are
expected to serve to biology research in the same way, but it is only possible when
errors of the model well estimated. By knowing the absolute value and location of
the error in a model, it can be effectively used for practical purposes, which depend
on the estimated error range. Thus, real-value error estimation is a key for bridg-
ing structure prediction to practical application, and thereby capitalizes tremendous
efforts paid in the past years for developing protein structure prediction methods.
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