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INTRODUCTION

Urgent tasks in bioinformatics are the interpretation of

massive genomics and the other omics data,1,2 such as pro-

tein–protein interaction3–6 and gene expression data.7,8

Prediction of gene function is of a particular importance,

because it is an indispensable step of genome sequence

annotation9,10 and thus the basis of a wide variety of biol-

ogy research.11,12 Function prediction to genes in a ge-

nome is mainly done by employing sequence comparison-

based methods, which ranges sequence database search

methods,13–15 functional domain assignments,16–18 and

sequence motif searches.19,20 Recent developments are

aimed to have a larger coverage in a genome scale function

annotation by employing comparative genomics ap-

proaches21–23 and extensive mining of more information

from PSI-BLAST search results.24–27

Protein tertiary structure can be an additional useful

source of information for function prediction when avail-

able.28,29 Structure-based approaches are becoming more

and more important as structural genomics projects30–32

have been accumulating an increasing number of tertiary

structures of proteins of unknown function. In fact more

than 1200 protein structures of unknown function are

solved and deposited to Protein Data Bank (PDB)33 by

structural genomics projects, which await functional eluci-

dation.34

Because the global structure of proteins are better con-

served than sequence during evolution in general,35,36

weak homology between proteins could be better detected
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ABSTRACT

Experimentally determined protein tertiary structures are

rapidly accumulating in a database, partly due to the struc-

tural genomics projects. Included are proteins of unknown

function, whose function has not been investigated by

experiments and was not able to be predicted by conven-

tional sequence-based search. Those uncharacterized protein

structures highlight the urgent need of computational meth-

ods for annotating proteins from tertiary structures, which

include function annotation methods through characterizing

protein local surfaces. Toward structure-based protein

annotation, we have developed VisGrid algorithm that uses

the visibility criterion to characterize local geometric fea-

tures of protein surfaces. Unlike existing methods, which

only concerns identifying pockets that could be potential

ligand-binding sites in proteins, VisGrid is also aimed to

identify large protrusions, hollows, and flat regions, which

can characterize geometric features of a protein structure.

The visibility used in VisGrid is defined as the fraction of

visible directions from a target position on a protein sur-

face. A pocket or a hollow is recognized as a cluster of posi-

tions with a small visibility. A large protrusion in a protein

structure is recognized as a pocket in the negative image of

the structure. VisGrid correctly identified 95.0% of ligand-

binding sites as one of the three largest pockets in 5616

benchmark proteins. To examine how natural flexibility of

proteins affects pocket identification, VisGrid was tested on

distorted structures by molecular dynamics simulation. Sen-

sitivity decreased �20% for structures of a root mean

square deviation of 2.0 Å to the original crystal structure,

but specificity was not much affected. Because of its intui-

tiveness and simplicity, the visibility criterion will lay the

foundation for characterization and function annotation of

local shape of proteins.
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by comparing protein folds.37,38 Special attention should

be paid, however, to ‘‘superfolds,’’ which is adopted by

various proteins of different functions.39,40 More

directly, function of a protein can often be predicted by

identifying its characteristic local tertiary structure re-

sponsible for the function. This applies especially well to

enzymes, because they have distinct conserved catalytic

residues.41 Thus, a straightforward way to predict an en-

zymatic function of a protein is to identify catalytic resi-

dues by applying known templates of active sites,42,43 by

finding characteristic local environment of functional res-

idues,44,45 or by identifying the surface shape of active

sites.46–49 For example, eF-Site50 compares surface geo-

metries described as graphs, where nodes of a graph

being vertices of triangles of the Connolly surface repre-

sentation.46 Sequence conservation is also a valuable in-

formation to identify functionally important region in a

protein structure.51–53

From a structural point of view, functional sites, espe-

cially active sites of enzymes, can often be identified

by detecting a pocket region, because in many cases a

catalytic site locates at a large pocket in a protein

structure.54,55 Several methods have been developed for

identifying pockets as potential active sites of proteins:

CAST uses Delaunay tessellation of protein residues; here,

empty triangles construct the cavity regions of the pro-

tein.54 LIGSITE places a protein on a grid and identifies

a binding pocket as solvent-accessible grids, which are

enclosed on both sides by the protein.56 POCKET

detects cavities by placing a trial sphere of a given radius

on a 3D grid, and grids with a sphere that does not

make a contact in x, y, or z directions are considered to

be cavities.57 SURFNET identifies cavities by fitting

spheres between atoms.58 Identifying pockets in a pro-

tein structure also has its application in ligand–protein

docking prediction, as an initial step to narrow the

search space for docking.59–63

The existing algorithms mentioned above focus their

application on identification of pocket regions for struc-

ture-based ligand design and characterization/classifica-

tion of active sites of enzymes. However, in the structural

genomics era, when structures of totally unknown func-

tion await investigation, we need more versatile methods

that can ‘‘annotate’’ characteristic surface shapes in a

given protein structure and link them to functional infor-

mation. Ultimately, we would like to develop a database

and matching algorithms for three-dimensional (3D)

local surface motifs, which are the signature of each class

of protein families. Those 3D surface motifs would be

represented as a combination of geometric feature, physi-

cochemical properties, and/or evolutionary information

(e.g., sequence conservation). As a step toward this end,

here we have developed a novel algorithm, VisGrid,

which can identify protrusions, flat regions, hollows, to-

gether with pocket regions in a protein surface. Flat

regions are important because it is known that many of

the known protein–protein interaction interfaces are

actually flat.64 In this manuscript, we first introduce the

visibility, which is the key idea of the VisGrid algorithm.

Next, we show examples of characteristic local geometry

of proteins identified by VisGrid. Then, we have tested

the performance of VisGrid in identifying active sites of

enzymes in large benchmark databases of ligand bound

and unbound structures. Considering the possibility of

applying VisGrid to predicted structures, we have care-

fully checked the robustness of the algorithm by carrying

out the benchmark on distorted structures from the crys-

tal structure by a molecular dynamics (MD) simulation

program.65

MATERIALS AND METHODS

The visibility criterion

The visibility is defined as the fraction of visible direc-

tions, that is, directions that are not blocked by protein

atoms, from a point in a 3D grid where a target protein

structure is projected (Fig. 1). The first step is voxeliza-

tion of the target protein structure. A protein is projected

onto a 3D grid that is large enough to contain all the

atoms of the protein. The unit grid size used is 0.9 Å.

Then any voxel (cell of the grid) within a sphere center-

ing a protein atom with the radius of the van der Waals

Figure 1
The visibility of a voxel. The visibility of a target voxel is defined as the number

of visible directions from the voxel. There are 26 directions from the target voxel

when one surrounding layer is considered. Visible directions from the target

voxel (in black) are 9, 2, and 18 in A, B, and C, respectively. A direction is

considered to be visible if consecutive n (n 5 20) voxels are not filled by the

protein in that direction.
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radius of the atom plus the radius of a water molecule

(1.4 Å) is marked as filled by the protein, otherwise

marked as empty. The size of a water molecule is

added to take the accessible surface area of a protein66

into account. Subsequently, surface voxels are defined

among the filled voxels as ones that are adjacent to at

least one empty voxel. Thus, each voxel in the system

is marked as either surface, filled (but not surface), or

empty.

Now the visibility of each surface voxel is computed.

The total number of possible directions of a voxel is 26

when one surrounding layer of the voxel is considered

and 98 when the second layer is counted. A direction is

considered to be visible when a ray shot from the target

voxel toward that direction does not hit any filled or sur-

face voxel up to 20 steps.

Pockets, hollows, protrusions,
and flat regions

After the visibility for each voxel is computed, all the

voxels whose visibility falls into a predefined range are

collected. Then, among the collected voxels, those which

are within 2.0 Å to each other are grouped. A voxel is

merged into a group if the voxel is closer than 2.0 Å to

any one of voxels in the group. Two groups are merged

into one group if any pair of voxels from the two groups

is closer than 2.0 Å to each other.

A pocket is identified as a set of grouped voxels with a

certain visibility below a threshold, and a hollow is an

empty space surrounded by filled voxels with a low visi-

bility below a threshold. The procedure of identifying

pockets and hollows is the same. As for identifying a

protrusion region, we used the negative image of a pro-

tein volume, that is, a protrusion in an original protein

is identified as a pocket region of the negative image of

the protein. This is because identifying pockets in the

negative image turned out to be less sensitive to small

local bumps of a protein surface, rather than directly

grouping voxels with a high visibility in the original pro-

tein surface.

Identification of pockets and protrusions are com-

pleted using voxels. Then, to be able to name atoms and

residues, which form identified pockets or protrusion

regions, atoms that have a pocket/protrusion voxel within

the radius of the van der Waals radius of the atom plus

the radius of a water molecule are determined to be

included in the pocket/protrusion region.

Finally, from the rest of the regions, which are not

identified by pockets, hollows, or protrusions, the most

flat circular region of the radius of 10 Å centering a sur-

face atom is identified. For a given group of N surface

atoms (xi, yi, zi) (i 5 1,. . .,N), which are within a circle

of 10 Å, a plane, ax 1 by 1 cz 1 d 5 0, is fitted in the

following way:

The sum of the square of the distance from each atom

to the plane, E2, is

E2 ¼
XN
i¼1

axi þ byi þ czi þ dj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
� �2
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c
,
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c
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from which A, B, and D, hence a, b, c, and d, which

define the plane, can be computed.

The grid size of 0.9 Å and the grouping parameter of

2.0 Å were determined in our previous work, which used

the same tertiary grid to represent a protein structure in

voxels for protein docking prediction.67,68

Benchmark data sets for
pocket identification

Because a ligand-binding site of an enzyme usually

locates at a pocket or a hollow of the enzyme, finding a

geometrical pocket and hollow itself can be used as a

prediction method of binding sites of enzymes. Recent

studies show that combining with the other information,

such as sequence conservation, hydrophobicity, or charge

distribution can further improve the accuracy of the pre-

diction.69,70 Although the purpose of VisGrid is not

only identifying pockets and hollows but also protrusions

and flat regions, as a way of demonstrating usefulness

of VisGrid, here we applied it for prediction of ligand-

binding sites. Note that benchmarking performance of

protrusion or flat region identification is not possible

because there are not a golden standard data set of pro-

trusion and flat regions of proteins. Primarily, we used

Liganded-Pocket (L-P) Set71 as the benchmark database,

which consists of 5616 protein structures taken from

Protein Data Bank (PDB).33 L-P set includes natu-

rally occurring heteromolecules of a reasonable size.

B. Li et al.
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Redundant pairs of a protein and a ligand were removed,

but the original L-P set does include identical proteins

with different ligands, because pocket shapes are different

when different ligands are bound. To eliminate potential

bias of homologous proteins in the benchmark results,

we have further tested VisGrid on two additional data

sets created from the L-P set, where redundant entries in

terms of sequence and structure are removed. In the first

set, by referring a representative protein set created by

PDB-RERPDB server72 Rel.#2005_05_29 [essentially pro-

teins with more than 30% sequence identity and a root

mean square deviation (RMSD) of less than 10Å are

grouped in a family], only one representative protein in

each protein family are chosen from the L-P set. This set

is named L-P-reprdb set, which contains 1139 proteins.

In the second set, one protein from each topology of

proteins defined by CATH database73 version 2.6.0 is

chosen from the L-P set. This set is named L-P-cath set,

which contains 273 proteins. In addition to these bench-

mark tests on the L-P set, we have tested VisGrid on

ligand unbound structures to examine the performance

in a more realistic situation of predicting ligand-binding

site in proteins. Performance of VisGrid on data sets of

unbound proteins are compared with four other existing

programs. See the section entitled ‘‘Comparison with the

Other Existing Methods’’ below.

Moreover, we have further tested VisGrid on distorted

structures of 164 proteins in the L-P set. The purpose of

this experiment is to mimic the situation of predicting

ligand-binding sites in computationally predicted protein

structures. Considering the recent situation that protein

structure prediction methods, especially template-based

structure prediction methods,74–76 have improved to

make reasonable models in many cases, it is of great in-

terest to investigate how robustly VisGrid performs on

predicted structures whose RMSD are in a realistic range

of ‘‘successful’’ predictions. To generate hypothetical pre-

dicted protein structures that are distorted from its

native structure but still maintain ‘‘protein-like’’ stereo-

chemical characteristics, we used a MD simulation pack-

age, NAMD.65 For each of the 164 proteins, a series of

structures are generated with an RMSD to the original

crystal structure of 0.5 Å (148), 1.0 Å (159), 1.5 Å (163),

2.0 Å (156), 2.5 Å (113), and 3.0 Å (45). These distorted

structures and files of input parameters used in this cal-

culation are found at http://dragon.bio.purdue.edu/

visgrid_suppl/. In the parentheses, the number of avail-

able proteins among the 164 proteins in the RMSD range

is shown. Some of the proteins were not available for a

certain RMSD range because there was not a structure

within that range in the simulation trajectories generated.

Especially, only 45 proteins were available for the range

of 3.0 Å, because about three quarters of the simulated

proteins did not distort that far in the simulations of

about 24 h at the temperature of 310 K with implicit

water. Ligand molecules are removed from protein struc-

tures when molecular dynamics simulation is performed.

Note here that this benchmark on the data set of dis-

torted structures is much more challenging than bench-

mark of unbound proteins, because in most of the cases

the RMSD between an unbound structure and its bound

form is around 1 Å or less. In the two data sets of pairs

of bound and unbound proteins, the average RMSD of

pairs are 0.51 and 0.52 Å (see below).

Definition of accurate prediction
of binding sites

In the benchmark data sets above, the actual binding

site residues are defined as all the residues, which are

closer than 4.5 Å to the ligand. The distance between a

residue and a ligand is defined as the minimum distance

between all the possible pairs of heavy atoms of the resi-

due and the ligand. The accuracy of predictions is com-

puted in both residue-based and the binding site-based.

The sensitivity and the specificity of the residue-based ac-

curacy are computed as follows:

Sensitivity ¼ TP=TPþ FN ð5Þ

Specificity ¼ TP=TPþ FP ð6Þ

where TP is the number of actual binding site residues,

which are correctly predicted to be binding site residues;

FN is the number of actual binding site residues, which

are missed in a binding site residue prediction; FP is the

number of residues not included in ligand-binding sites

of a protein but wrongly predicted to be binding site

residues.

A predicted binding site is considered to be correct if a

certain fraction of the residues involved in the actual

binding site are covered in the prediction (Fig. 5).

Comparison with the other existing methods

The performance of binding site prediction by VisGrid

is compared with four other programs, LIGSITE,56

SURFNET,58 CAST,54 and PASS.77 PASS rolls a probe

sphere on a protein surface and identifies pockets as

regions where probes have higher number of contacts

with atoms. The algorithms of LIGSITE, SURFNET, and

CAST are briefly mentioned above in Introduction sec-

tion. The LIGSITE source code was downloaded from

http://scoppi.biotec.tu-dresden.de/pocket/download.html.

The SURFNET source code was obtained from http://

www.biochem.ucl.ac.uk/�roman/surfnet/surfnet.html. We

used the CAST web server at http://sts.bioengr.uic.edu/

castp/calculation.php.

We have chosen the four methods for comparison

because all of them use solely geometry of protein surface

as input information. However, a fair comparison is still

not trivial because these methods use different algorithms

Local Geometry Of Protein Surfaces
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and were evaluated (thus probably tuned) in different

criteria in their original papers. Considering this diffi-

culty, the comparison is performed in the following two

stages. First, because CAST also predicts pockets defined

by binding residues in the pockets, primarily VisGrid is

compared with CAST (Table II, Fig. 8). A predicted

binding site by CAST and VisGrid is considered to be

correct if 50% or more of the residues in the predicted

binding site overlap with the residues of the actual bind-

ing site. Second, to compare all the four methods with

VisGrid, we follow the approach taken by Huang and

Schroeder.78 Essentially, the performance of an algorithm

on a test protein is evaluated by the distance between the

center of mass of the binding ligand and a point speci-

fied by each method is computed (Table III, Fig. 9). For

LIGSITE, the point is the geometric center of the pocket

site’s grid points. PASS predicts an active site point.

SURFNET outputs each detected gap region represented

by an ATOM record, which we use as the point. As for

VisGrid and CAST, we computed the center of mass of

atoms of a predicted binding site as the point to be used

for evaluation. Note that this is not a fair comparison

especially for CAST and VisGrid, but we took this

approach because LIGSITE, SURFNET, and PASS do not

predict binding residues, but a point in an empty space

of a pocket. If the distance between the center of the

binding ligand and the point representing a predicted

binding site is equal to or less than 4.0 Å, that prediction

is considered to be correct. In contrast to the residue-

based and the binding site-based accuracy introduced

above, we call this accuracy metric the ligand center-

based accuracy.

We used three data sets for this comparison. The first

data set is 48 pairs of ligand-bound and unbound pro-

teins taken from Table 4 in the paper by Huang and

Schroeder.78 The average RMSD between a pair of

bound and unbound proteins is 0.52 Å computed by the

CE program.79 The second data set used is 86 pairs of

bound and unbound proteins. These pairs are taken

from the L-P set mentioned above and its associated data

set called the U-P set, which is the counterpart of

unbound proteins to the bound proteins in the L-P

set.71 The average RMSD between a bound and unbound

protein pair is 0.51 Å. The list of proteins in these two

data sets can be found at our website, http://dragon.bio.

purdue.edu/visgrid_suppl/. In addition to the two sets of

bound and unbound proteins, we used the data set of

the distorted structures described above as well. For an

unbound protein and a distorted protein structure, the

(hypothetical) ligand center to be predicted is determined

by superimposing its counterpart bound protein, trans-

ferring the ligand center of the bound protein to the

unbound or to the distorted structure. Ligand-binding

residues of an unbound protein or a distorted protein is

assumed to be the same as its counterpart protein with

the bound ligand.

RESULTS

Identified pockets, protrusions,
and flat regions

Figure 2 shows examples of identified pocket regions,

protrusions, and flat regions by VisGrid. Figure 2(A) is

HSP90, which has an adenosine triphosphate (ATP)-

binding pocket. All the ligand-binding residues are correctly

identified. A large protrusion on the left of Figure 2(A1) is

Figure 2
Examples of identified pockets, protrusions, and flat regions in protein surfaces.

Atoms in color are as follows: blue, those identified as pockets; red, protrusions;

green, flat regions. A residue is identified to be in a pocket if its visibility is

among the smallest top 8%. Ninety-eight directions from a voxel are considered

to define the visibility. Atoms in a protrusion region are the ones that have the

inverse visibility of 2/98 or less (i.e., an identified pocket in the negative image).

Atoms in green in each protein are the most flat group of surface residues, which

fit in a sphere of a radius of 10 Å. (A) HSP90 molecular chaperone (PDB code:

1am1) that has a bound ADP in the crystal structure. A1 and A2 are the views

from different directions. All the 18 residues that bind to ADP in the binding

pocket are correctly identified. The average distance from atoms in the identified

flat region to the fitted plane, df, is 1.31 Å. (B) Argininosuccinate synthetase

that binds ATP (1kp2). Eighteen among 19 ATP-binding residues are identified

as pocket regions. df 5 1.47 Å. (C) 3-a-Hydroxysteroid dehydrogenase that

binds NAD (1fk8). Twenty-four among 27 NAD-binding residues are identified

as pocket regions. df 5 1.49 Å. (D) cis-Biphenyl-2,3-dihydrodiol-2,3-

dehydrogenase that binds NAD (1bdb). Thirty-one among 34 NAD-binding

residues are identified as pocket regions. df 5 1.49 Å. The flat region (shown in

D2) locates at the back side of the pocket region (D1). (E) D-glyceraldehyde-3-

phosphate dehydrogenase that binds NAD (1gad). Twenty-four out of 25 NAD-

binding residues are identified as pocket regions. df 5 1.31 Å. E1 and E2 are

views from different directions. (F) Ferredoxin-NADP1 reductase that binds FAD

(1e62). Fifteen out of 20 FAD-binding residues are identified as pocket regions.

df 5 1.42 Å. Views from two different directions are shown (F1 and F2).
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the C-terminal tail, which stretches outward. Another

protrusion locating on the right side of the figure is a

loop region between two helices. The other small protru-

sions in the protein are side-chains that point outward.

The identified flat region is formed by a side of a kinked

small helix. Figure 2(B) is argininosuccinate synthase,

another enzyme with an ATP-binding site. The large pro-

trusion is the C-terminal long helix, which flips out from

the mass. The flat region is formed by a kinked helix of

ten-residue long. Eighteen ATP-binding residues among

the total 19 are correctly identified. Figure 2(C) is 3-a-
hydroxysteroid dehydrogenase, which has a large pocket

for nicotinamide adenine dinucleotide (NAD). Twenty-

four among 27 ligand-binding residues are correctly

identified in this structure. Protrusions identified are

parts of helices, which lie at the entrance of the NAD-

binding pocket. The flat region on the left side in the fig-

ure consists of two parallel helices. Figure 2(D) is a dehy-

drogenase, which binds NAD. The identified large pro-

trusion is the C-terminal tail of the protein. Thirty-one

among 34 NAD-binding residues are correctly identified.

The flat region, which is on the opposite side of the

pocket, consists of ten residues at the end of two helices

and a strand. Figure 2(F) is a dehydrogenase, which has

a large NAD-binding site. Twenty-four out of 25 NAD-

binding residues are correctly identified in the binding

pocket. The identified large protrusion next to the NAD-

binding pocket is a long loop region, which hangs over

the pocket. The flat region is formed by a helix-turn-

helix of eleven residues. Figure 2(F) is ferredoxin NADP1
reductase, which binds flavin adenine dinucleotide (FAD).

The two large protrusions are loops, which stick out and

hold FAD. The most flat region of this protein surface

locates at the back side of the FAD-binding pocket, con-

sisting of one side of a helix, a part of a strand, and a

loop region.

To summarize this section, firstly, ligand-binding resi-

dues are very well predicted as ones in pockets by Vis-

Grid in these examples. Moreover, a large characteristic

protrusion in each protein structure was identified, suc-

cessfully ignoring many small bumps on the surface. The

flat regions of the size of radius of 10 Å identified here

consist of one side of helices and a part of a loop or

strand. Although computing an ‘‘accuracy’’ of identified

protrusions and flat regions is not possible in the same

way as we do for predicted ligand-binding sites, the pro-

trusions and flat regions shown in Figure 2 would be in-

tuitive and reasonable by visual inspection. Combined

with other properties such as sequence conservation,

charges, and hydrophobicity, local geometric features Vis-

Grid can identify will be useful 3D local surface motifs of

protein families.

Identification of ligand-binding sites:
residue-based accuracy

We have tested if VisGrid can detect ligand-binding

sites of proteins as pockets or hollows, because ligand-

Figure 3
The sensitivity and the specificity of predicting ligand-binding residues relative to the visibility threshold value used to identify pockets. The average value of the sensitivity

(A) and the specificity (B) over all the proteins in the L-P set is plotted. Amino acid residues are predicted to be ligand-binding residues if they are in pockets detected by

using a visibility threshold value shown on the X-axis. Two visibility definitions are used: the fraction of visible directions among 98 directions in total (filled symbols

with solid lines) or the fraction of visible directions out of 26 directions (empty symbols with dotted lines). Filled circle (l), residues in the largest pocket detected using

the 98 visible directions are considered. Filled triangles (!), residues in one of the top three largest pockets, which have the largest overlap with the actual binding pocket,

are considered. The 98 directions are used to compute the visibility. Filled squares (n), residues in all the detected pockets using the 98 directions are considered. Empty

circles (*), residues in the largest pocket detected using the 26 directions is considered. Empty triangles (!), residues in one of the top three largest pockets with the

largest overlap with the actual binding pocket are considered. The 26 directions are used to compute the visibility. Empty squares (h), residues in all the pockets detected

using the 26 directions are considered.
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binding pockets are where geometric aspect of protein

surface shape and protein function is directly connected.

A practical convenience of this exercise is that the accu-

racy can be well defined as the fraction of correctly iden-

tified ligand-binding residues and the fraction of the

correctly predicted binding sites in a data set. First, we

examined how the sensitivity and the specificity of pre-

dicting ligand binding residues changes as the threshold

value of visibility changes.The sensitivity and the specific-

ity are defined in the Eqs. (5) and (6). Five-thousand

and six-hundred and sixteen proteins in the L-P set are

used. Increasing the visibility threshold makes the sensi-

tivity higher [Fig. 3 (A)] and the specificity lower [Fig.

3(B)], because in most of the cases a ligand binds to a

pocket or a hollow, which have smaller visibility. Almost

all the binding residues are captured when the visibility

threshold of 0.35 or lower is used. While the sensitivity

monotonically increases as the visibility threshold is

raised, a peak is observed for the specificity at around

the visibility of 0.08. This is partly because using a too

small visibility threshold will detect small local deep

depressions, which are not included in a large global

pocket. It is shown that using 98 directions (filled sym-

bols) improves the specificity over results using 26 direc-

tions (empty symbols). At the visibility threshold of 0.08,

considering the top three largest pockets (and choose the

one with the highest sensitivity; triangles) rather than

just the largest pocket (circles) improves the specificity

approximately by 0.08 and sensitivity by 0.07. The best

specificity, 0.52, is achieved at the visibility criterion of

0.08 using 98 visible directions, when the top three larg-

est pockets are taken into account. The sensitivity

achieved with the same visibility threshold is 0.75. Figure

4 shows the ROC curve of predicting ligand-binding resi-

dues. L-P-reprdb set and L-P-cath set gave almost the

same results compared with the results on the original

full L-P set.

Binding site-based accuracy

Next, the accuracy is computed based on the number

of correctly identified binding sites in the benchmark set.

In Table I, a detected pocket as a predicted binding site

is counted as correct if it overlaps more than 50% of the

actual ligand-binding residues. But because the accuracy

depends on the criterion of the overlap, we show the ac-

curacy computed with different overlap thresholds (Fig.

5). Here one of the three detected largest pockets, which

gives the largest overlap to the actual binding site, is

used to compute the accuracy. Consistent with the results

of residue-based accuracy (Fig. 4), considering top 0.8%

voxels with the smallest visibility gives the best accuracy

(sensitivity), then using top 150 smallest visible voxels

follows. With the 50% overlap threshold, the accuracy is

0.95 (by considering 0.8% top smallest visible voxels).

The accuracy further increases almost to 1.0 if the over-

lap threshold is relaxed to 0.3 or less. On the other hand,

the accuracy drops rapidly when the threshold is raised

to 0.8 or higher. This plot gives important implication in

prediction of ligand-binding sites: First, almost all

(97.2%) of the actual binding site is overlapped by more

than 30% with one of the three largest pockets identified

by VisGrid. In other words, geometrical characteristic

alone (pockets and hollows) can significantly restrict

search space without taking a risk of missing the correct

binding site. On the other hand, approximately only in

half of the cases a pocket out of three largest identified

has more than 90% overlap to the actual site. Therefore,

some additional information, such as residue conser-

vation, charge distribution, and so forth, should be

combined to further specify or adjust the position of

ligand-binding sites.

Figure 4
The ROC curve of the ligand-binding residue prediction. Three data sets are

used: black circles, the full L-P set; gray circles, the L-P-reprdb set; empty circles,

L-P-cath set. The visibility threshold to detect ligand-binding pockets on a

protein surface is varied to have a series of the false positive rate and the

sensitivity of ligand-binding residue prediction. For each visibility threshold,

three largest pockets are detected. Residues in one of the three detected pockets,

which have the largest overlap to the actual binding site, are predicted to be

ligand-binding residues.

Table I
The Binding Site Level Accuracya

Top 1 Top 3b Top 5 Top 10 All

Visibility � 8/98 77.0 (%) 83.5 84.3 84.6 88.9
Top 150 voxels 80.7 88.1 88.8 89.1 93.4
Top 0.8% voxels 85.7 95.0 95.8 96.1 98.4

The L-P set is used for this test.
aA predicted binding pocket is considered to be correct if it overlaps more than

50% of the actual binding site.
bA prediction for a protein is considered to be correct if one of the three largest

pockets identified by VisGrid overlaps with the actual binding site by more than 50%.
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Table I shows the accuracy considering top 1, 3, 5, and

10 largest pockets and all voxels with a small visibility. It

is shown that considering top 3 largest pockets improves

the accuracy significantly (6.5–9.3%) compared to the

results of considering only the largest pocket. However,

considering further more pockets, for example, top 5 or

top 10, gave only a marginal gain in the accuracy. These

results indicate that most of ligand-binding sites of a

protein locate at one of the three largest pockets.

Figure 6 is given to clarify that the size of pockets Vis-

Grid identifies is almost in the same size as actual bind-

ing sites, which occupy �5% of the total protein surface.

Even when three largest pockets are considered for pre-

diction, on average they cover only 15% of the whole

surface area of the target protein.

Binding site identification on
distorted structures

A further challenging experiment is conducted on pre-

dicting binding sites in distorted protein structures by

MD simulation (Fig. 7). This is to test robustness of the

algorithm to predicted protein structures, which usually

have unavoidable errors. Figure 7 shows that the specific-

ity stays almost the same but the sensitivity shows

approximately a decrease of 0.06 on distorted structures

of an RMSD of 1.0 Å, and a decrease of 0.21 on struc-

tures of an RMSD of 2.0 Å. These results imply that

some binding sites changed their shape as the global

structure is distorted and lost a large volume of their

cavity, so that VisGrid could not identify them. However,

the consistent specificity indicates that false positive pre-

dictions will not increase on distorted structures. Here

again employing additional physicochemical or sequence

characteristics of binding sites will help retaining the

sensitivity.

Comparison with the other existing methods

The performance of VisGrid was compared with four

existing algorithms, CAST, PASS, SURNET, and LIGSITE.

First we compared VisGrid with CAST, because both of

them predict ligand-binding residues so that the compar-

ison can be more straightforward. Table II shows the

results of the binding site-level accuracy on two data sets

of bound and unbound protein pairs. In the same way as

Table I, three methods of selecting voxels with a low visi-

bility are used for VisGrid to detect pockets. Among the

three methods, consistent to Table I, VisGrid performed

best when the top 0.8% smallest visible voxels are used

(Table II). Overall, VisGrid performed better than CAST

in these two data sets in terms of the binding site-based

accuracy. In Figure 8, VisGrid and CAST are further

compared in the distorted protein structure set. Again in

this data set, VisGrid performed better than CAST. The

performance of CAST starts to deteriorate when the

RMSD of the distorted structure grows larger than 1.5 Å.

In contrast, VisGrid showed more stable performance

irrelevant to the RMSD of the distorted structure in this

Figure 5
Fraction of correctly predicted binding sites relative to the threshold value to

define a predicted pocket is correct. If one of the three largest identified pockets

overlaps with the correct binding sites by more than the value on the X-axis,

that predicted pocket is considered to be correct. The L-E set is used. Solid line,

voxels with a visibility of 8/98 or less are used to identify the largest pocket;

Dotted line, top 150 voxels with the smallest visibility are used; Dotted line,

voxels of the top 0.8% smallest visibility are used. Only the largest pocket in a

protein is considered.

Figure 6
Distribution of fraction of the surface area of predicted pockets relative to the

whole surface area of the protein. The number of voxels is used to count a

surface area. Proteins in the L-P set are examined. Filled circle, distribution of

the actual binding sites of the proteins; Empty circle, the largest pockets

identified in a protein by using voxels with the visibility of 8/98 or less; Filled

triangles, the largest pockets identified by using top 150 less visible voxels; Empty

triangles, the largest pockets identified by using the top 0.8% voxels with the

smallest visibility.
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benchmark test. Note here that Figure 7 shows the pre-

diction results of VisGrid in terms of the binding resi-

due-based accuracy, while Figure 8 shows the binding

site-based accuracy on the same data set. Comparing Fig-

ures 7 and 8, it can be concluded that although the less

binding residues are correctly predicted by VisGrid as

structures are more distorted (Fig. 7), it did not affect

much to the binding-site level accuracy (Fig. 8).

Next, VisGrid is compared with CAST, LIGSITE, PASS,

and SURNET in terms of the ligand center-based accu-

racy. For this comparison, we had to use the ligand cen-

ter-based accuracy because LIGSITE, PASS, and SURF-

NET predict the coordinates of the center of pockets but

not binding residues. In the data set of 48 bound and

unbound protein pairs (Table III), VisGrid showed the

second best performance in Top 1 prediction of bound

and unbound proteins. In the data set of 86 pairs of

bound and unbound proteins (Table III), the rank of

VisGrid was the fourth in the Top 1 prediction for the

bound and unbound proteins. Here, note that actual out-

puts of the predictions by CAST and VisGrid examined

in Tables II and III are the same, but the apparent num-

ber of correct predictions in the two tables for CAST and

VisGrid differs because different metrics of the accuracy

are used. This illustrates difficulty of comparing perform-

ance of programs in a fair fashion. When the five pro-

grams are compared on the data set of the distorted

structures in terms of the ligand center-based accuracy

(Fig. 9), VisGrid clearly outperformed PASS, SURFNET,

and CAST. To conclude this section, although a fair com-

parison and accurate ranking of the programs are not

possible and not the aim of this study, VisGrid showed

at least comparable performance with the others com-

pared, and showed superior performance to several of

the methods. Especially, VisGrid showed the top per-

formance in the distorted structure data set.

Figure 7
The sensitivity and the specificity of predicted binding residues computed on the distorted structures of the L-P set. The X-axis shows the RMSD of the distorted structures

to the native structures. (A) The sensitivity; (B) the specificity. Circle, the prediction using voxels with the visibility of 8/98 or less; Triangles, the prediction using top 150

voxels with the smallest visibility; Squares, the prediction using the top 0.8% voxels with the smallest visibility.

Table II
Performance Comparison with CAST in Terms of the Binding Site Level Accuracy

48 Bound structuresa 48 Unbound structuresa 86 Bound structuresb 86 Unbound structuresb

Top 1 Top 3c Top 1 Top 3 Top 1 Top 3c Top 1 Top 3

CAST 32 (66.7%) 42 (87.5%) 34 (70.8%) 40 (83.3%) 65 (75.6%) 73 (84.9%) 56 (65.1%) 68 (79.1%)
Visibility � 8/98 40 (83.3%) 46 (95.8%) 46 48 (100%) 71 (82.6%) 81 (94.2%) 67 (77.9%) 82 (95.3%)
Top 150 voxels 46 48 46 48 76 (88.4%) 86 (100%) 77 (89.5%) 85 (98.8%)
Top 0.8% voxels 45 (93.8%) 48 46 48 80 (93.0%) 86 76 86

aThe number of correct prediction in the dataset of 48 ligand bound and unbound protein structures. The 48 pairs of bound and unbound structures are taken from

Table 4 of Huang and Scheroeder.78

bThe dataset of 86 ligand bound and unbound protein structures from the L-P and U-P sets.
cA prediction for a protein is considered to be correct if one of the three largest pockets identified by VisGrid overlaps with the actual binding site by more than 50%.
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Examples of predicted binding sites

Four illustrative examples of predicted ligand-binding

sites are shown in Figure 10. Figure 10(A) is a successful

prediction of binding sites in 1ra8. A large pocket in the

center of the protein, which includes two binding sites of

folate and 2-monophosphoadenosine-50-diphosphoribose
are well detected with a sensitivity of 0.86 and a specific-

ity of 0.71. Figure 10(B) is a successful prediction of a

binding hollow embedded inside of a protein. The ligand

dilinoleoylphosphatidylcholine is wrapped by a curled b-
sheet and two helices of phosphatidylcholine transfer

protein (1ln1), and almost invisible from outside. The

protein in Figure 10(C) is the same as shown in Figure

10(A) (1ra8), but distorted by MD simulation to an

RMSD of 2.5 Å. The binding pocket of 2-monophos-

phoadenosine-50-diphosphoribose is deformed and lost

its volume by the MD simulation, but the folate binding

site is still detected. Figure 10(D) is an example of which

VisGrid failed to detect a target binding site. Dihydrogen-

phosphate binds to a shallow surface of phosphate-bind-

ing periplasmic protein, which is not included among

the top three largest pockets in the protein.

DISCUSSION

We have introduced the VisGrid algorithm, which

identifies geometric features of protein surfaces using an

intuitive concept of the visibility. Unlike existing

programs, which only focus on identification of ligand-

binding pockets in proteins, VisGrid also identifies large

protrusions or flat regions, which characterize a protein

surface, that is, annotation of protein surfaces. Character-

izing a protein surface by VisGrid is important for func-

tion annotation of proteins from the tertiary structure.

Figure 8
Performance comparison of VisGrid and CAST on the data set of distorted structures. The data set used is the same as the one used for Figure 7. The binding site level

accuracy is computed for VisGrid in the three different methods: to use all the voxels with the visibility of 8/98 or less to identify the largest pockets, to use top 150 voxels

with the smallest visibility, and to use the top 0.8% voxels with the smallest visibility. A predicted binding site of a protein is considered to be correct if it overlaps more

than 50% of the residues of the actual ligand-binding site of the protein. (A) The largest pocket identified is considered; (B) Among the three detected largest pockets, the

best one that has the largest overlap to the actual binding site is considered.

Table III
Performance Comparison with CAST, LIGSITE, PASS, SURFNET in Terms of the Ligand Center-Based Accuracy

48 Bound structuresa 48 Unbound structuresa 86 Bound structuresb 86 Unbound structuresb

Top 1 Top 3 Top 1 Top 3 Top 1 Top 3 Top 1 Top 3

CAST 27 (65.9%) 38 (79.2%) 31 (64.6%) 37 (77.1%) 66 (76.7%) 79 (91.9%) 66 (76.7%) 79 (91.9%)
LIGSITE 40 (83.3%) 44 (91.7%) 36 (75.0%) 38 (79.2%) 65 (75.6%) 75 (87.2%) 69 (80.2%) 77 (89.5%)
PASS 32 (66.7%) 42 (87.5%) 27 (56.3%) 34 (70.8%) 54 (62.8%) 71 (82.6%) 54 (62.8%) 71 (82.6%)
SURFNET 23 (47.9%) 34 (70.8%) 19 (39.6%) 29 (60.4%) 63 (73.3%) 77 (89.5%) 63 (73.3%) 77 (89.5%)
VisGrid: Top 0.8% voxels 32 (66.7%) 38 (79.2%) 34 (70.8%) 41 (85.4%) 61 (70.9%) 66 (76.7%) 55 (64.0%) 63 (73.3%)

aThe number of correct prediction in the 48 ligand bound/unbound protein pairs.
bResults of the 86 ligand bound/unbound structure pairs from the L-P and U-P sets.
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Finding characteristic local sites in a protein surface is

analogous to protein sequence analyses routinely used for

function annotation of protein sequences by identifying

various features in sequences, such as local sequence

motifs,16,17,19,80 conserved regions, and correlated

mutation sites.81 We particularly emphasize here the im-

portance of identification of protrusions and flat regions:

besides predicting ligand-binding pockets, of great inter-

est in protein bioinformatics is predicting protein–pro-

tein interaction interface of a protein and protein dock-

ing. To predict protein interaction interface, identifying

flat regions is essential information of geometric features

of local regions that can be combined with information

of physicochemical properties and residue conservation,

because it was repeatedly reported that protein interac-

tion sites are relatively flat and the other properties differ

according to the nature of the protein complex.82,83 Fig-

ure 11 shows examples of two protein interaction sites,

which include the most flat regions of the protein surfa-

ces. On the other hand, in a protein docking prediction

where the aim is to predict a docked conformation of

the two input protein structures, shape complimentarity

of local regions of the two proteins gives the essential in-

formation to guide the search of the conformation

space.84,85 In our previous works,68,67 preidentifying

complementary regions, such as pairs of a small pocket

in one protein and a protrusion in another, can reduce

the search space thus the computational time on average

50% without sacrificing the accuracy. There identification

of local protrusions is necessary.

The importance of structure-based function prediction

is increasing because the structural genomics projects are

producing structure of proteins whose function cannot

be predicted by conventional sequence-based methods.

Function prediction by local structural signature is not

only for totally uncharacterized proteins, but will be also

useful for any protein, because it could find additional

potential hidden function of the protein, which is not

investigated before. Function prediction from local sur-

face signature involves the initial step of identifying char-

acteristic sites of proteins and the subsequent step of

comparison of that site to known sites in a database. In

these steps, robustness of the algorithm on finding same

functional sites from different structures is essential. If an

algorithm is sufficiently robust, the range of application

will be larger because the algorithm can be also applied

to predicted protein structures. Therefore, we have

benchmarked VisGrid on identifying ligand-binding sites

in distorted structures (Fig. 7). This kind of difficult by

realistic test has not been done for existing pocket find-

ing programs, as far as we are aware. We found that

specificity of VisGrid does not drop even if structures are

distorted up to 3.0 Å. This is important because it

implies that VisGrid will have very low false positive in

binding pocket identification even for structures of

slightly different conformation in the range of natural

flexibility.

Biology has entered the proteomics era when massive

amount of data awaits interpretation. To take full ad-

vantage of expensive proteomics data, bioinformatics

Figure 9
Performance comparison with CAST, LIGSITE, PASS, and SURFNET on the data set of distorted structures. As for VisGrid, only the results of using the top 0.8% voxels

with the smallest visibility is shown. The performance was evaluated in terms of the ligand center-based accuracy. (A) The top-scoring predicted ligand-center is

considered; (B) Prediction made for a protein is considered to be correct if the actual ligand center is included as one of the three highest-scoring predicted ligand centers.

The data set used is essentially the same as the one used for Figures 7 and 9, but the number of structures considered in the evaluation is smaller, because some of the

programs crashed on several structures. The number of structures at each RMSD level on which all the programs produced meaningful outputs thus used in this

evaluation is as follows: 0 Å: 153 (164); 0.5 Å: 137 (148); 1.0 Å: 147 (159); 1.5 Å: 151 (163); 2.0 Å: 142 (156); 2.5 Å: 106 (113); 3.0 Å: 43 (45). In the parentheses, the

number of the original data set is shown.
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Figure 10
Examples of binding site predictions. Bound ligands are shown in yellow and predicted binding sites are colored in red (green and blue in D). (A) Dihydrofolate reductase

complexed with folate and 2-monophosphoadenosine 5 0-diphosphoribose (1ra8). Thirty out of 35 ligand-binding residues are correctly predicted among the predicted 42

residues, which constitute the largest pocket. Sensitivity: 30/35 5 0.86, specificity: 30/42 5 0.71. (B) Phosphatidylcholine transfer protein complexed with

dilinoleoylphosphatidylcholine (1ln1). An example of a ligand completely buried in the protein. Sensitivity: 32/33 5 0.97; specificity: 32/50 5 0.64. (C) A distorted

structure of 1ra8 to RMSD of 2.5 Å. The binding pocket for folate is still predicted in this distorted structure. Sensitivity: 18/35 5 0.51; specificity: 18/24 5 0.75. (D)

Phosphate-binding protein complexed with dihydrogenphosphate (1a54A). An example of wrong prediction, where none of the 25 binding residues are not predicted.

Three largest predicted binding sites are shown in red, blue, and green.

Figure 11
Examples of flat protein–protein docking interface. The most flat surface of a radius of 7 Å (the same as Fig. 2) are shown in red, and the whole docking interface is

colored in pink. (A) Acetylcholinesterase complexed with fasciculin-II (PDB: 1fss). The number of residues in the docking interface of acetylcholinesterase is 25, among

them 10 residues are included in the most flat region colored in red. The average distance from atoms in the flat region (red) to the fitted plane, df , is 0.86 Å and the df
of the whole docking interface is 0.91 Å. (B) Serratia metallo protease complexed with an inhibitor. The number of residues in the docking interface of the protease is 30,

and among them, nine residues are included in the most flat region colored in red. df of the flat region is 0.78 Å and the df of the whole docking interface is 0.71 Å.

PROTEINS 681

Local Geometry Of Protein Surfaces



infrastructure of many different kinds should be devel-

oped. Compared to sequence-based methods, develop-

ment of tools for structure analyses and annotation has

lagged behind. Because of its intuitiveness and simplicity,

the visibility criterion for characterizing local protein sur-

face shapes implemented in VisGrid has a wide range of

application in development of structure-based tools for

protein annotation.
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