
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

Protein structure prediction using
residue- and fragment-environment
potentials in CASP11
Hyungrae Kim1 and Daisuke Kihara1,2*
1 Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47906

2 Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907

ABSTRACT

An accurate scoring function that can select near-native structure models from a pool of alternative models is key for suc-

cessful protein structure prediction. For the critical assessment of techniques for protein structure prediction (CASP) 11, we

have built a protocol of protein structure prediction that has novel coarse-grained scoring functions for selecting decoys as

the heart of its pipeline. The score named PRESCO (Protein Residue Environment SCOre) developed recently by our group

evaluates the native-likeness of local structural environment of residues in a structure decoy considering positions and the

depth of side-chains of spatially neighboring residues. We also introduced a helix interaction potential as an additional scor-

ing function for selecting decoys. The best models selected by PRESCO and the helix interaction potential underwent struc-

ture refinement, which includes side-chain modeling and relaxation with a short molecular dynamics simulation. Our

protocol was successful, achieving the top rank in the free modeling category with a significant margin of the accumulated

Z-score to the subsequent groups when the top 1 models were considered.
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INTRODUCTION

Due to the increased number of deposited structures

in the Protein Data Bank (PDB)1 and the technical

advancement of structure prediction algorithms, many

recent methods are able to produce moderate to highly

accurate models when appropriate template structures

can be found in PDB. However, challenges remain for

modeling a novel fold; that is, where appropriate tem-

plate structures that cover a large portion of a target pro-

tein do not exist. Structure prediction methods that

predict novel folds without relying on availability of tem-

plate structures, often called ab initio or de novo folding

methods, are also very important for designing artificial

proteins.2 In CASP11 (http://predictioncenter.org/casp11/),

held in 2014, performance of prediction methods for

novel folds was evaluated under the category of “free

modeling.”

In structure prediction, particularly in an ab initio

approach, it is key to develop an accurate scoring func-

tion for guiding the structure building process or for

selecting near-native models from a pool of decoy struc-

tures. Many scoring functions have been developed over

the past two decades, including physics-based functions

and knowledge-based functions, which are based on sta-

tistics of geometric features of native proteins in PDB.1

One well-studied and important class of knowledge-

based scoring functions is contact potentials, which cap-

ture the propensities that residues or atoms interact with

each other in protein structures.3–5 Contact potentials

differ in various aspects, including contacting centers,6

additional geometric features considered (e.g., angles7,8),
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the reference state used to normalize observed counts of

contacts in the database,9 and the number of residues/

atoms considered.10–12

We have recently developed a new knowledge-based

scoring function for selecting near-native structures

called PRESCO (Protein Residue Environment SCOre).13

PRESCO compares the local structural environment of

each residue in a structure model to those in native

structures to quantify native-likeness of the residue envi-

ronment. The local structural environment considers the

coordinates and the residue depth14 of neighboring

amino acids of the target residue. A target residue envi-

ronment is rewarded if similar environments found in

the reference structure dataset are of identical or similar

residue types to the target, which indicates that the target

environment is specific to the residue type. Residue simi-

larity is defined by a combination of several amino acid

similarity matrices.15 PRESCO is designed to capture the

interactions of multiple residues, which distinguishes

itself from the pairwise nature of existing knowledge-

based potentials. PRESCO was benchmarked on decoy

sets that are commonly used to test scoring functions’

native and near-native recognition ability and showed

better performance than several existing scoring

functions.13

We have also recently developed another coarse-

grained statistical potential that captures the preferred

spatial arrangement of helices in protein structures. The

characteristic distribution of the crossing angles of two

helices has been reported earlier16–21 and knowledge-

based potentials have been developed for helix packing

preferences.22,23 We implemented a helix-helix interac-

tion potential in CABS, a coarse-grained protein folding

program,24 as a scoring term to supplement the other

CABS potentials.

In CASP11, we used PRESCO and the helix-helix

interaction potential for selecting decoys from server

models that were made available for human predictors.

Selected models were refined by side-chain modeling and

structure relaxation with a short molecular dynamics

(MD) simulation. The whole procedure turned out to be

successful. Our group was ranked first among all the par-

ticipants in the free modeling (FM) category when the

top 1 models were considered (http://www.predictioncen-

ter.org/casp11/zscores_final.cgi?formula5assessors). Using

the assessors’ formula for model evaluation, which con-

siders six scores, GDT-TS,25 IDDT,26 TenS,27 QCS,28

contS,29 and Molprobity,30 our group (Kiharalab, group

code 333) obtained the Sum Z-score of 44.2048, which

has a relatively large gap of 7.5064 to the second group

with 36.6984. When the models with the best scores

among five submitted models were considered, our

group was ranked second. In this case, the Sum Z-score

gap to the first group was 5.452. Now that the native

structures of targets and group rankings have been

released, we perform a retrospective examination of each

step of our prediction procedure to discuss its successes

as well as potential areas for improvement.

MATERIALS AND METHODS

Overall structure prediction procedure

Our structure prediction procedure is summarized in

Figure 1. PRESCO played the main role in selecting ini-

tial models from server models that were made available

to human predictors. Three models were selected with

PRESCO and the other two were selected by our recently

developed helix-helix interaction potential that is imple-

mented in CABS. Side-chains of selected models were

removed and rebuilt with Oscar-Star.31 Finally, models

underwent structure relaxation with a short MD simula-

tion. The five models were ranked by PRESCO again and

submitted. Below, each step is explained in more detail.

Model selection by PRESCO

Here we overview the essence of the PRESCO algo-

rithm. Please refer to the original paper13 for further

details. PRESCO evaluates how much each residue in a

structure model is native-like by comparing the neigh-

boring residues of the target residue to those in a refer-

ence structure database. The comparison is performed in

the following steps. First, the main-chain conformation

of the nine-residue-long fragment centered at the target

residue is compared against the structures in the refer-

ence database and the 500 lowest root-mean-square devi-

ation (RMSD) fragments of the same size from the

database are pre-selected. Then, the neighborhood of res-

idues are compared between the target residue and those

in the center of the pre-selected fragments, where the

neighborhood is defined with a sphere of 8.0 and 6.0 Å

radius (the side-chain depth environment, SDE). SDEs

that have a different number of side-chain centroids in

Figure 1
The schematic diagram of the prediction protocol we used in CASP11.
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the sphere are discarded. To compute similarity of two

SDEs, first the side-chain centroids of residues in the

spheres are superimposed to pair residues in the two

SDEs. Then, the similarity of two SDEs is defined by the

RMSD of the residue depth14 of the amino acids in the

two spheres. Residue depth quantifies the distance from

the residue position to the protein surface.14 For a target

residue, the 40 most similar (that is, smallest depth

RMSD) SDEs to the query SDE are selected and ranked

according to their depth RMSD. Subsequently, a score is

computed for the target residue, which is a weighted

sum of an amino acid similarity score computed for each

retrieved residue, where the weight reflects the rank of

the retrieved residue. Thus, if a retrieved residue is simi-

lar to the target residue according to the amino acid sim-

ilarity matrix used, the target residue will receive a high

score. We explain in more detail below. Finally, the score

of a model is the sum of the score given to each residue

in the model:

SDE based Score 5
XL

i51

XN340

j51

wjSai2aj
(1)

where L is the length of the protein model, N is the

number of times that the residue i appears in SDEs of

the protein model, 40 is the number of SDEs retrieved

from the database for a query SDE in the model, and

Sai-aj is the amino acid similarity score taken from a

matrix S for residue i in the query and residue j retrieved

from the database.

One of the keys of this scoring function is the choice

of the weighting scheme and the amino acid similarity

matrix. During the course of developing PRESCO, we

benchmarked a dozen amino acid similarity matrices

obtained from the AAIndex database32,33 and identified

several weighted combinations of matrices that per-

formed well in identified near-native decoy structures.

Combinations of matrices and weights were tested in

near-native decoy recognition on the Ryukunov & Fiser

dataset34 which consists of decoys of 143 proteins that

were used as prediction targets in rounds 5 to 8 of

CASP. On average, there are 18.3 models per target.

We explored combinations of two matrices and found

the following five combinations gave good performance:

CC80 matrix15 with a weight 1/(RMSD)0.01 and

BLOSUM3035 with a weight 1= bn=2c11f g
QU_C1 matrix36 with a weight 1= bn=5c11f g and

QUIB matrix37 with a weight 1= bn=5c11f g
CCPC matrix15with a weight 1/(RMSD)0.01and

BLOSUM30 with a weight 1= bn=2c11f g
QU_C2 matrix36with a weight 1/(RMSD)0.1and

BLOSUM30 with a weight 1= bn=2c11f g
QUIB matrix37 with a weight 1= bn=2c11f g and

QU_C1 with a weight 1= bn=5c11f g

In the weight equations, n is the rank of the SDE

among 40 retrieved from the reference dataset and bc is

the floor function (which returns the largest integer that

does not exceed the provided value). The weight

decreases as the rank of the retrieved residue decreases.

CCPC is a matrix that is based on the correlation coeffi-

cients of an amino acid residue contact potential, while

CC80 is a linear combination of CCPC and another

matrix (AAIndex ID: KOLA920101),38 which is based on

the similarity of the dihedral angles of amino acids.QUIB

(AAIndex ID: QUIB020101) is a numerically optimized

amino acid matrix to minimize the average RMSD of

aligned proteins in benchmark databases.37 QU_C1

(AAIndex ID: QU_C930101) and QU_C2 (AAIndex ID:

QU_C930102) are matrices that capture amino acid resi-

due contact propensities.36 BLOSUM30 was computed

from observed mutation frequency in multiple sequence

alignments and is commonly used for sequence align-

ments and sequence database searches.35

The idea of developing scores for evaluating residue

environments is not new. Following the observations that

a residue in a structure affects to the structure and distri-

bution of surrounding residues,39–44 several multi-body

contact potentials11,12,45 and scoring functions that

consider residue environments have been devel-

oped.46–48 The Levitt group has developed a hydropho-

bic score that consider the number of residues within a

10 Å radius sphere and the number of interactions with

surrounding hydrophobic residues and applied it to

threading.47 DeGrado and his co-workers developed a

statistical potential for atomic environments where an

atom environment is specified by the number of other

atoms in the environment and types of contacting

atoms.46 They used the potential to select native and

near-native structures from decoy sets. Mooney and his

colleagues used a residue environment representation

that captures atoms within concentric spheres around a

Cb atom of a residue to recognize functional sites of

proteins.48

Compared to the environment scores mentioned

above, PRESCO have two novel aspects. First, PRESCO

judges the similarity of residue environments with multi-

ple structural criteria by considering the similarity in

main-chain conformation, the number of residues in the

probe sphere, and the depth of residues from the protein

surface. Second, PRESCO employs multiple amino acid

similarity matrices, which reflect different aspects of

amino acids, to define amino acid similarity between the

query residue and residues with similar environments

that are retrieved from the reference database. Thus,

PRESCO examines the environment of residues more

thoroughly from various different angles than the exist-

ing environment scores.

The near-native model recognition performance of

these five score combinations on the Ryukunov & Fiser

set is summarized in Table I. In the table we also list the
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performance of six existing scores on this dataset taken

from Zhang & Zhang (2010).8 Among the scores com-

pared, the combination of CC80 and BLOSUM30

showed the best performance in the average rank of the

best decoys (2.82). In terms of the number of decoy sets

where a scoring function selected the closest-to-native

model with the best score, QMEAN6 showed the best

results with 85 decoy sets. The PRESCO score pair com-

binations came next with 66 decoys, which were better

than the other five existing scores.

Server models downloaded from the CASP website

were ranked by the Z-score sum of the five score combi-

nations, and three best scoring models were selected

from the pool. Two more models were selected by the

helix-helix interaction potential as we describe in the

next section. After the refinement step, the five refined

models were ranked with PRESCO again to decide the

final order of the models. The first three were always the

models that were originally selected with PRESCO, and

the first model (Model 1) was always the best model by

PRESCO. The order of the second and the third models

where decided by visual inspection. The forth and the

fifth models were those originally selected by helix

potential.

Helix-helix interaction potential and CABS

We have developed a new knowledge-based helix-helix

interaction potential based on the observed frequency of

helix pair interactions depending on the angle and dis-

tance between them. This potential is still under develop-

ment and details will be described elsewhere. In this

section, we outline the nature of the potential and show

benchmark results on a small dataset.

The statistics of helix interactions were taken from a

set of 2536 globular proteins obtained from the PISCES

server49 with a 25% sequence identity cutoff. Figure 2

shows the observed frequencies of crossing angles and

distance between two helices. The angle distribution is

consistent with previous studies.19,20 The observed dis-

tribution was normalized by the expected number of

counts of angles20 and distance to compute a

knowledge-based potential. The new helix-helix interac-

tion potential was implemented into the CABS protein

structure modeling program24 as an additional potential

term among the other knowledge-based scoring terms in

CABS. The helix potential was only computed for input

protein structure models with two or more helices.

Otherwise, structures were evaluated with the original

potentials implemented in CABS. CABS is a coarse-

grained protein folding program that can fold a protein

structure for ab initio structure prediction; however, we

limited movement of the initial structure and mainly

used the framework for evaluating models.

In Table II, we show benchmark results of the helix

potential on selecting the native structure for 19 CASP9

targets out of an average of 47.9 server decoys. All of

these targets were helical or a/b proteins. Three scoring

schemes were compared: the helix potential, the original

CABS potential, and the integrated CABS with the helix

potential. The average native rank of the 19 targets was

12.2 by the CABS potential, 10.9 by the helix potential,

and 8.7 for the integrated CABS with the helix potential.

In a head-to-head comparison in terms of the native

structure rank, the helix potential outperformed CABS

for 10 targets while the integrated helix and CABS won

over CABS for 12 among the 19 targets (with one tie).

The advantage of the helix potential over CABS

became clearer for difficult targets when none of the

decoys were close to the native. When 10 targets were

Table I
Performance of SDE Pair Combinations of PRESCO on the Rykunov &

Fiser Decoy Set

Scoring function Average ranka Ranked 1b

SDE (QUIB) 2.89 56
CC80 1 BLSM30 2.82 66
QU_C2 1 BLSM30 3.24 66
QU_C1 1 QUIB 3.13 66
QUIB 1 QU_C1 3.03 66
CCPC 1 BLSM30 3.04 66
QMEAN6 2.87 85
RWplus 2.97 57
RW 3.08 51
DOPE 5.77 54
DFIRE 6.03 50
OPUS_PSP 5.39 54
Random 9.72 13.9

The values for QMEAN6 and below are taken from Zhang & Zhang (2010).
aThe average rank of the lowest energy (or the highest scored for PRESCO) decoy

by each score in the absence of the native structure in the decoy set. The decoys

were ranked in terms of their GDT-TS score to the native.
bThe number of decoy sets when the best scoring model by each score was the

closest to the native. The native structure was excluded in the decoy sets.

Figure 2
The distribution of crossing angles of helices was shown as a function

of inter-helices distance. The distance was measured between the centers
of helices.
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considered where the RMSD of the best five models was

larger than 5.0 Å, the average rank of the native structure

by CABS, the helix potential, and the integrated helix

and CABS were 11.5, 4.0, and 5.5, respectively. These

results suggest that the helix potential is able to capture

coarse-grained native-like features of helical proteins.

Side-chain remodeling

The refinement steps consist of side-chain remodeling

and structure relaxation by MD. We used Oscar-Star to

rebuild the side-chains31 of a model after having

removed them. Oscar-star was chosen because it per-

formed best in our recent benchmark study in which we

compared eight side-chain prediction programs in build-

ing side-chains of different structural environments.50

Structure minimization by MD

Next, the structure of a model was relaxed with MD

with the CHARMM molecular mechanics potential.51

An implicit solvent with screened coulomb potential

(SCP) was used. After a 50 step initial minimization,

MD was run for 100 steps (0.2 picoseconds) at 100 K

while restraining the Ca atoms to their initial position.

Scores for model evaluation

In CASP11, six scores were used by the assessors to

evaluate and rank submitted models. They were GDT-TS

(Global Distance Test Total Score),25 lDDT (local Dis-

tance Difference Test score),26 TenS (Ten scores used in

CASP5),27 QCS (Quality Control Score),28 contS (Con-

tact score),29 and Molprobity.30 GDT-TS evaluates the

fraction of residues in a model that are placed within

four cutoff distances to the native structure after super-

imposition. lDDT is an alignment-free local structure

evaluation for a model which considers the fraction of

preserved atom pair distances between a model and

native. TenS integrates ten scores which include GDT-TS,

secondary structure overlap, structure alignment scores,

and sequence-level alignment scores. QCS aims to cap-

ture global features of a model by evaluating the mutual

arrangement of secondary structure elements. contS eval-

uates the similarity of Ca distances between a model and

native. Molprobity was designed to validate structures

solved by X-ray crystallography and thus evaluates the

most detailed structural features of a model including

atom contacts, hydrogen bonds, bond angles and lengths,

side-chain rotamers, and main-chain dihedral angles.

With the exception of Molprobity, a larger score indi-

cates a better quality model.

RESULTS

The results will be shown in two parts. First, we dis-

cuss how well our decoy selection procedure performed.

Subsequently, the effect of the refinement steps will be

examined.

Table II
CASP 9 Native Structure Rank Scored by Helix and CABS Potential

Helix bundles
CASP9 target
domains

Top5 models
mean RMSD
to Native (�)

Native rank
by helix
potential

Native rank
by CABS
potential

Native rank
By helix and

CABS potential

T0516-D1 2.6 3 19 5
T0534-D1 23.5 1 4 1
T0534-D2 17.7 1 5 1
T0538-D1 2.1 17 3 10
T0544-D1 11.2 6 28 4
T0547-D3 9.4 3 1 2
T0548-D2 2.7 5 12 3
T0553-D2 6.3 10 20 10
T0555-D1 11.4 9 8 12
T0575-D1 4.7 20 16 14
T0575-D2 3.2 23 8 21
T0586-D2 2.9 28 17 7
T0602-D1 1.5 16 24 18
T0608-D1 12.1 3 4 4
T0611-D1 5.5 1 4 1
T0615-D1 4.8 9 7 5
T0619-D1 1.6 34 20 27
T0627-D1 5.7 7 24 9
T0637-D1 19.9 11 8 11
Average Rank of Native 10.9 12.2 8.7
Average Rank of Native

Structures for 10
high-mean-RMSD Targets

4.0 11.5 5.5
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Quality of selected models by PRESCO
and the helix potential

Selecting good quality models from available server

models was a key for success in our protocol. In Figure

3(A,B), we show the distribution of GDT-TS and the Z-

score (computed among all the server models) of GDT-

TS of the selected models among server models that were

made available for human predictors. The number of

submitted server models for a target ranges from 184 to

199 models with an average of 191.69. Even though six

of them (T0775, T0793, T0799, T0802, T0804, T0826)

do not have their crystal structure available as of writing

of this article, we discuss all 27 targets released for pre-

diction for FM targets based on the released assessment

from the prediction center. Three models were selected

with PRESCO [shown in red Fig. 3(A,B)] and two addi-

tional models were selected by the helix potential [shown

in blue Fig. 3(A,B)].

The average GDT-TS score of all the server models

(the grand mean of the target means) was 14.6. The

average GDT-TS score of PRESCO-selected models was

higher, 16.47, while that of the models selected by the

helix potential was 15.42. If we consider the best GDT-

TS model selected by PRESCO and the helix potential

for each target, the margin between PRESCO and the

helix potential increased slightly to 20.18 and 17.52 for

PRESCO and the helix potential, respectively. In terms of

the average Z-score [Fig. 3(B)], PRESCO also showed

better performance than the helix potential. The average

Z-scores of the selected models were 0.61 and 0.32 for

PRESCO and the helix potential, respectively. When the

best Z-score model was considered for each target, again

the advantage of PRESCO over the helix potential

increased, with the average Z-scores of the selected mod-

els being 1.39 and 0.75, for PRESCO and the helix

potential, respectively.

Although our scoring functions did not always select

the top models among the available server models, there

are notable cases where the selection was very successful.

Among the 27 targets, there were 8 and 5 cases where

PRESCO and the helix potential, respectively, selected a

model among the top 5 server models available. Specifi-

cally, PRESCO selected the best model out of 192 server

models for T0804, the second best model out of 192

server models for T0775, T0804 (thus both the best and

the second best models were selected for this target by

PRESCO), T0820, T0827 and the third best model for

T0794. On the other hand, the helix potential selected

the best model from 192 server models for T0793 and

T0837 and the third best model for the targets T0836.

T0837 and T0836 have an a-helix bundle structure and

T0793 is an a/b class protein.

Figure 3
Quality of selected models by PRESCO and the helix potential. 3 models were selected with PRESCO (red) and two more models were selected
with the helix-helix interaction potential (blue). A, GDT-TS; B, the Z-score of GDT-TS; of the selected models among server models made avail-

able. 81 models selected with PRESCO and 54 those which were selected with the helix potential.
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In Figure 4, we compared the performance of the two

scoring functions with two existing ones, DFIRE9 and

GOAP.52 The average GDT-TS Z-score of the top-

selected models with PRESCO, the helix potential,

DFIRE, and GOAP were 0.99, 0.53, 0.40, and 0.22,

respectively. When the best models among between the

PRESCO and the helix potential was considered, the

PRESCO/helix potential showed an average Z-score of

1.58 while DFIRE and GOAP’s values were 1.11 and

0.87, respectively. Examples of targets for which PRE-

SCO and the helix potential outperformed GOAP and

DFIRE and opposite cases are shown in Figure 5 and

the associated Table III. As shown in Figure 4, PRESCO

selected better models than DFIRE and GOPE for most

of the targets. Those targets include a-class proteins,

such as T0804, T0802, and T0785 [Fig. 5(A–C)] and a-

class proteins, including T0827 and T0820 [Fig.

5(D,E)]. But for some a-helical proteins were better

selected by the helix potential than PRESCO. T0836 and

T0837 are such examples [Fig. 5(F,G)]. The last two

panels, T0775 and T0793 [Fig. 5(H,I)], show the oppo-

site cases, where DFIRE performed better than PRESCO

in selecting decoys. These are relatively large proteins

with long loops.

Overall, PRESCO and the helix potential performed

fairly well in selecting good quality models with notable

success in several cases. In this evaluation, our scoring

Figure 4
Comparison of selected models by PRESCO, the helix potential, GOAP,
and DFIRE. Colors are PRESCO: red, the helix potential: blue, GOAP:

green, and DFIRE: yellow. The GDT-TS Z-score of models that were
ranked the best by each score among the available server models were

plotted.

Figure 5
Examples of targets for which a score performed better than other
scores. Four scores, PRESCO, the helix potential, DFIRE, and GOAP

were compared. A, T0804; B,T0802; C,T0785; D, T0827; E, T0820; F,
T0837; G,T0836; H, T0775; I,T0793. A, B, C, are examples of targets of

b-class folds for which PRESCO outperformed the other scores. D and

E are examples of a-class fold targets for which PRESCO outperformed.
F and G are helix bundle protein targets for which the helix potential’s

selections were better than the other three scores. H and I are cases that
DFIRE performed better than PRESCO and the helix potential. The Z-

scores of the models selected by the four scores for these targets are
listed in Table III.

Table III
Z-Scores of the Selected Models for Representative Targets by the Four

Scores

Targets Fig. 5 Panel a) PRESCO Helix DFIRE GOAP

T0804 A 7.45 0.12 20.32 0.12
T0802 B 1.76 21.31 21.31 0.12
T0785 C 1.45 20.23 0.15 0.70
T0827 D 3.22 0.78 20.56 20.15
T0820 E 2.98 1.16 0.07 0.07
T0837 F 1.48 4.74 4.25 2.01
T0836 G 1.51 2.09 20.19 1.51
T0775 H 1.90 0.70 2.62 0.70
T0793 I 20.04 0.96 1.38 20.04

The Z-score of the top choice model by the four scores are listed. The largest Z-

score for each target among the four selected models is shown in bold. A Z-score

of a model was computed for the model’s GDT-TS score relative to all the server

models.
aCorresponding panels in Figure 5 are indicated.
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function performed better than the two existing

potentials.

In Table IV, we provide a list of servers from which

PRESCO and the helix potential from which models

were selected. The majority (88.9% when only Model 1

models were considered, and 79.0% when three models

were considered) of PRESCO’s choices were from five

servers (Table IV A). The helix potential selected models

from more diverse servers (Table IV B). When the top

choices of the helix potential were considered, 88.9%

were comprised of eight servers.

Refinement of selected models

Selected models underwent the two refinement steps

(Fig. 1), side-chain rebuilding and structure relaxation by

MD. We analyzed how much the six evaluation scores

changed due to the two refinement steps applied to the

models. Figure 6 shows the Molprobity score (lower is

better) for 135 models submitted for the 27 targets. It is

shown that the Molprobity score improved or showed no

change for 92.6% (73 cases improved out of 135, there

were no change in 50 cases, 12 cases become worse) tar-

gets by the side-chain rebuilding with Oscar-Star [Fig.

6(A)]. In many cases the improvement is substantial with

a change of over 0.5. The average decrease of Molprobity

score was 0.682.

However, it turned out that the subsequent structure

relaxation step deteriorated many models [Fig. 6(B)].

Indeed, the Molprobity score of 74.8% of the models

was made worse by structure relaxation. Particularly, the

score of 19 models showed an adverse change of 2 to 3.

Because of this unsuccessful structure relaxation step, the

overall post-processing procedure decreased the effect of

refinement [Fig. 6(C)]. At the end, the number of mod-

els with an improved or unchanged score after the entire

refinement procedure reduced to 60 (44.4%) from the

123 that were improved after the side-chain rebuilding

step. We also examined changes of the other five scores,

GDT-TS, lDDT, ContS, QCS, and TenS, which evaluate

larger structural differences of models, but only minor

changes were observed (data not shown).

During CASP11, we used DFIRE energy to evaluate

the effect of the refinement procedure as the native

structures of targets were not known. Figure 7 shows the

change in DFIRE energy (lower is better) of the submit-

ted 135 models for the 27 FM targets. Improvement of

DFIRE was observed for the majority of the models. The

average decrease was 21586.60. The most significant decrease

of DFIRE was observed for a model for target T0793, whose

energy improved from 248381.36 to 256840.32 by

28458.96.

To summarize the results in Figures 6 and 7, the

applied refinement procedure improved the DFIRE

energy of the majority of the models, but did not impact

the evaluation scores with the exception of Molprobity.

Molprobity was improved substantially by the side-chain

rebuilding but was worsened by the subsequent structure

relaxation with MD, which weakened the effect of the

entire refinement effort.

Quality of our submitted models

Figure 8 shows six scores, GDT-TS, lDDT, TenS, QCS,

contS, and Molprobity, of our submitted first model

(Model 1) in comparison with Model 1 models of all

human and server groups. The average rank of our

Model 1 models for the 38 domains was 20.9 for GDT-

TS, 16.9 for lDDT, 17.4 for tenS, 21.4 for QCS, 18.0 for

contS, and 24.9 for Molprobity. Our models were ranked

within the top 5 by GDT-TS 6 times, and 9, 9, 8, 6, 8

times, by lDDT, tenS, QCS, contS, and Molprobity,

Table IV
Servers From Which Models Were Selected By Our Scoring Functions

A. The number of models selected from each servers by PRESCO.

Servers TOP1 Within TOP3

myprotein-me 6 14
BAKER-ROSETTA-Server 6 11
Zhang-Server 5 19
RBO_Aleph 4 7
QUARK 3 13
nns 1 4
FFAS-3D 1 2
SAM-T08-server 1 1
TASSER-VMT 0 4
RaptorX-FM 0 2
MULTICOM-NOVEL 0 1
Seok-server 0 1
BioSerf 0 1
STRINGS 0 1
Total 27 81
Three out of five models were selected by PRESCO.

B. The number of models selected from each servers by the helix
potential.

Servers TOP1 Within TOP2

Zhang-Server 5 7
Baker-ROSETTA-Server 4 8
Seok-server 4 6
myprotein-me 3 8
nns 2 5
QUARK 2 4
Pcons-net 2 2
RBO_Aleph 2 3
SAM-T08-server 1 1
TASSER-VMT 1 1
BioSerf 1 1
RaptorX-FM 0 1
MULTICOM-REFINE 0 1
MULTICOM-CLUSTER 0 1
FFAS-3D 0 1
eThread 0 1
Distill 0 1
PSF 0 1
Atome2_CBS 0 1
Total 27 54
Two models were selected by the helix potential.
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respectively. The average Z-score of our Model 1 models

for the 38 domains was 1.15 for GDT-TS, 1.48 for lDDT,

1.30 for tenS, 1.03 for QCS, 1.15 for contS, and 1.16 for

Molprobity. Thus, among the six scores, our models

were evaluated better on average by lDDT and tenS rela-

tive to the other groups’ submissions.

9 of our Model 1 models were ranked within the top

5 by two or more measures, and our model for T0761-

D2 was selected among the top 5 models in terms of five

scores, GDT-TS, lDDT, tenS, QCS, and contS. T0775-D5,

T0804-D1, T0804-D2, and T0834-D1 were ranked among

the top 5 models by GDT-TS, lDDT, and tensS. T0785-

D1, T0793-D1, and T0793-D5 were ranked among the

top 5 by lDDT and QCS. T0826-D1 was ranked among

the top 5 by lDDT and Molprobity. T0855-D1 was

ranked among the top 5 by contS and Molprobity.

Examples of submitted models

In Figure 9, three examples of our models are shown.

The first example is the Model 1 model for T0804-D2

[Fig. 9(A)], which is a domain of residues 46–197 of

murine adenovirus fibre head (PDB structure not yet

released). This is the best model among all submissions

for this target. The GDT-TS score of this model is 38.82.

There are two other groups (Boniecki_pred and Skwark),

who produced models with a similar GDT-TS (38.65,

37.83, respectively), but all the rest of the submitted

models have substantially worse GDT-TS of lower than

21.0. Compared to its native structure [Fig. 9(B)], the b-

structure of this protein is not perfectly modelled, but

the topology of the main-chain is essentially the same as

native. Our model has a substantially better Molprobity

score of 1.38 than the Boniecki_pred and Skwark models,

whose scores are 2.63 and 2.98, respectively. This indi-

cates that the structure refinement worked for this

model.

The second example is the Model 1 model of T0799-

D1 [Fig. 9(C)], which is a domain of residue 1 to 141 of

a 408 residue-long protein, pb1 plus chaperone domain

(PDB structure not yet released). Together with other

two groups (MUFOLD-R and SHORTLE), our first

model for this domain has the best GDT-TS of 19.86.

This is a difficult target as indicated in the average GDT-

TS of 14.19 by all human and server models. Compared

to the native [Fig. 9(D)], the structure of the core of the

domain with three strands and a flanking helix is cap-

tured by our model, although the model failed to predict

Figure 6
Change of the Molprobity score in the model refinement. A, Molprobity of models before and after the side-chain rebuilding with Oscar-Star. B,
Molprobity of models before and after structural relaxation with short energy minimization by MD. Our submitted 135 models for 27 FM targets

were analyzed. C, Molprobity of models before and after the whole refinement procedure that consists of the side-chain rebuilding and the short

energy minimization.

Figure 7
Change of DFIRE energy by applying the refinement procedure to
models. 135 submitted models for all 27 FM targets were plotted.
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Figure 8
Z-score distribution of six scores for Model 1 from all human and the server groups. Our models are colored in red. A, GDT-TS; B, lDDT;

C, TenS; D, QCS; E, contS; and F, Molprobity. GDT_TS, ContS, tenS, QCS results were provided by the organizer upon our requests and lDDT

and Molprobity were computed by us for models downloaded from the CASP11 website.



the N-terminal region of the protein. Similar to the first

example, our model had a better Molprobity score (0.80)

than the two models with the same GDT-TS (1.17 and

2.29).

The last example is the first model for T0834-D1,

which consists of two separated regions of the sensor

domain of histidine kinase (PDB ID: 4r7q) residues, resi-

due 2 to 37 and another region of residue 130 to 192

[Fig. 9(E)]. Our Model 1 model produced the second

part of the domain well, with a TM-score of 0.45 and a

GDT-TS of 0.59 and ranked the third among all submis-

sions. Again our model had a better Molprobity score

(0.69) than the two other models that had a higher

GDT-TS score than our model (0.96, 1.15).

Computational time of PRESCO

In Table V, we compared the computational time

needed by PRESCO with three other scores, GOAP,

RWplus,8 and dDFire.53 In the current na€ıve implementa-

tion of PRESCO, it takes significantly longer time to com-

pute a score for a structure model compared to the other

three scores. This is because residue environments, MRE

and SDE, of 2536 reference structures in the database are

not precomputed but newly computed again when each of

residues from a model is compared against. We are in the

process of improving the computational speed by precom-

puting and storing the MREs and SDEs of reference struc-

tures and by using an efficient searching method.

DISCUSSION

Here we investigated the effectiveness of each step in

the structure prediction procedure we employed in

CASP11. We limited the targets to examine only those

categorized for FM since our group performed well for

FM targets. The new concepts we applied in CASP11

were coarse-grained residue-environment and helix-helix

interaction potentials, which performed better than exist-

ing residue-pair or atom-pair knowledge-based potentials

in considering multi-body interactions. Multi-body con-

tact potentials, such as four-body potentials, have been

developed in the past; however, PRESCO has technical

advantages over such multi-body potentials. While previ-

ous multi-body contact potentials are limited to a single

number of residues (e.g., four), PRESCO considers resi-

due interactions of various different numbers in the ref-

erence sphere. Furthermore, a typical four-body potential

requires interaction statistics of every four-residue com-

bination; therefore, rare combinations may have an

insufficient sample size. In contrast, PRESCO is based on

pairwise amino acids found in similar residue environ-

ments, which allow for sufficient sampling of each resi-

due type.

Figure 9
Examples of our successful models relative to the other submissions. A,

Model 1 of our group for T0804-D2. B, the native structure of T0804-
D2. C, Our Model 1 for T0799-D1. D, the native structure of T0799-

D1. E. Superposition of our first model (green) and the native structure

(blue) of the residue 130 to 192 of T0834-D1. This model has a TM-
score of 0.45 and a GDT-TS score of 0.59.

Table V
Computational Time of PRESCO and Other Scoring Functions

CASP11 Targets Length (Residues) GOAP RWplus dDFire MRE SDE

T0824 110 19.038s 0.972s 0.914s 12m20.59s 17m54.82s
T0804 202 19.845s 1.007s 0.984s 13m20.51s 26m24.04s
T0767 318 19.632s 1.201s 1.114s 20m45.83s 42m43.92s
T0827 407 19.452s 1.338s 1.217s 26m29.40s 56m33.27s

The times shown are for processing one structure model of the CASP targets. The computational times were measured on a Linux machine with Intel Core i7-920

2.67 GHz CPU and 20 GB RAM.
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The model selection step went very well, for which we

employed the PRESCO residue environment score and the

helix interaction potential. According to the current analy-

sis, it was shown that these two scores performed better

than two existing scores, DFIRE and GOAP. In particular,

we were surprised to see that the helix potential worked

with a level of accuracy comparable to PRESCO.

The overall refinement step did not work as well. Dur-

ing CASP11, we believed that the models were refined

because improvement of DFIRE energy was observed.

However, it turned out that in many cases the improve-

ment was small in terms of the evaluation scores used by

the assessors. The lone exception was Molprobity, which

was improved by the side-chain rebuilding with Oscar-Star

for many models and remained as improved or no-change

for 44.4% of the models after the structure relaxation.

The structure relaxation step by MD did not work

well. In CASP11, our group was ranked among the best

in the model refinement category according to the asses-

sors’ presentation in the CASP11 evaluation meeting

(http://www.predictioncenter.org/casp11/docs.cgi?view5

presentations). For the refinement category, our group

employed an MD-based refinement procedure that is

similar to what the Feig group has used,54 except that

we used an implicit solvent model in running MD to

reduce the computational cost. In retrospect, we should

have applied the same refinement procedure for both

the FM and template based modeling (TBM) as we

used on the refinement targets. Thus, development of

an effective and computationally reasonable refinement

procedure remains as an important future goal for our

group.
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